Descrizione del progetto
Unificare i punti razionali e integrali nella teoria dei numeri
Lo studio dei punti razionali e integrali sulle varietà algebriche affascina da tempo i matematici; tuttavia, risulta necessaria una comprensione più profonda per unificare queste teorie. I punti semintegrali, introdotti da Campana e Darmon, forniscono un ponte in tal senso, generalizzando queste nozioni con una condizione di integrità legata a un divisore limite ponderato; eppure, nonostante i progressi compiuti, permangono interrogativi fondamentali sulla loro esistenza e densità. Sostenuto dal programma di azioni Marie Skłodowska-Curie, il progetto GIANT si propone di affrontare queste sfide sviluppando limiti superiori per la densità delle coppie di orbifold con punti semintegrali e identificando gli ostacoli alla loro esistenza. Combinando tecniche in ambito di teoria analitica dei numeri, geometria algebrica e statistica aritmetica, GIANT intende affrontare i problemi diofantei e perfezionare la comprensione delle soluzioni integrali.
Obiettivo
In this proposal semi-integral points refer to notions of rational points on algebraic varieties that satisfy an integrality condition with respect to a weighted boundary divisor. They were first introduced by Campana and by Darmon. Campana points have recently risen to the attention of the number theory community thanks to a Manin type conjecture in the recent work of Pieropan, Smeets, Tanimoto and Várilly-Alvarado. Semi-integral points provide both an intermediate notion and a generalisation of the notions of rational and integral points, thereby unifying the two theories. This proposal concerns the existence of semi-integral points and the density of orbifold pairs in general families having semi-integral points.
The aims of this proposal are to determine good upper bounds for the density of orbifold pairs in a general family that have semi-integral points (WP1) and to compute obstructions to the existence of semi-integral points (and hence to integral points) in key examples corresponding to long-lasting questions in number theory (WP2).
The approach will combine a variety of techniques from analytic number theory, algebraic geometry and arithmetic statistics. For (WP1), the experienced researcher and the supervisor will develop a criterion to detect local semi-integral points together with a sieve method to estimate the number of everywhere locally soluble varieties in the family. For (WP2), the research team will develop a Brauer-Manin obstruction theory for semi-integral points to compute failures of the integral Hasse principle in fundamental examples and handle classical Diophantine problems such as the existence of integral points on diagonal cubic surfaces and the non-existence of consecutive powerful numbers.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) HORIZON-MSCA-2023-PF-01
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
1113 Sofia
Bulgaria
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.