Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Echoes of Experience: How statistical and reward learning guide our decisions

Description du projet

Comparaison entre l’apprentissage par récompense et l’apprentissage statistique

Notre système visuel est confronté à une surcharge d’informations, ce qui nous incite à nous concentrer sur les éléments essentiels. L’apprentissage par récompense (AR) permet de hiérarchiser les éléments associés aux récompenses, tandis que l’apprentissage statistique (AS) permet de reconnaître des schémas, tels que les stimuli qui apparaissent fréquemment. Bien qu’ils collaborent pour guider notre attention, ils sont souvent étudiés indépendamment, ce qui complique la comparaison des résultats. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet RewSL compare AR et AS pour comprendre comment les individus apprennent implicitement de leurs expériences passées. Le projet enregistrera des mesures comportementales, oculaires et électroencéphalographiques chez des volontaires humains en bonne santé afin d’évaluer les effets individuels et combinés de l’AR et de l’AS sur la dynamique du processus. Cette étude promet de fournir des informations importantes sur les mécanismes d’apprentissage dans le monde réel.

Objectif

Our visual system constantly encounters a plethora of stimuli, drastically surpassing our processing capabilities for in-depth analysis. It is hence essential to select the element(s) that is most relevant for our objectives and ignore irrelevant ones. One helpful feature for this is that the world is characterized by numerous regularities making it partially predictable. Our brain can extract these regularities from past experience and use them to efficiently guide target selection. Recently, significant scientific interest has been directed to two forms of learning that focus on two types of regularities: in reward-mediated learning (RL), people learn which stimuli are associated with reward, prioritizing the elements related with high (vs. low) reinforcement. Statistical learning (SL), in contrast, allows people to extract statistical regularities from the environment, such as how often a stimulus occurs in a specific location, optimizing future actions toward the location where the relevant element appears frequently. In everyday life RL and SL coexist and they jointly guide our selection of relevant stimuli. However, they have been mainly addressed separately using divergent tasks, hindering a direct comparison of the results and assessing their combined influence. This project seeks to bridge this gap by systematically comparing RL and SL in a systematic and well-balanced experimental setup to understand how people implicitly learn from their past experience. Using a series of consistent experimental tasks, behavioral, ocular and electroencephalography measures will be recorded from healthy human volunteers to assess the individual and joint effect of RL and SL on the process dynamics from target selection until response execution. Furthermore, employing Markov decision process models, we will compare the observed performance with model performance. Jointly, our results will provide important insights into real-world learning mechanisms.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITEIT GENT
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 175 920,00
Adresse
SINT PIETERSNIEUWSTRAAT 25
9000 GENT
Belgique

Voir sur la carte

Région
Vlaams Gewest Prov. Oost-Vlaanderen Arr. Gent
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0