Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

A combined photoelectrochemical and fluorescence imaging system for investigating nanoparticle-cell interactions

Descrizione del progetto

Un sistema di immaginografia bimodale per accelerare la valutazione delle interazioni tra nanoparticelle e cellule

Le nanoparticelle, caratterizzate da una grandezza compresa tra 1 e 100 nanometri, sono invisibili all’occhio umano. Le loro minuscole dimensioni consentono spesso di ottenere proprietà fisiche, chimiche, ottiche ed elettriche esotiche diverse da quelle degli stessi materiali allo stato sfuso, che le hanno rese sempre più interessanti per applicazioni biomediche quali la somministrazione controllata dei farmaci, la terapia antitumorale e la bioimmaginografia. Ciononostante, è indispensabile garantire che i loro benefici non si associno a rischi inaccettabili. Con il sostegno del programma di azioni Marie Skłodowska-Curie, il progetto NANO-PEFIS si prefigge di integrare due approcci di immaginografia in un unico sistema combinando simultaneamente l’imaging fotoelettrochimico senza etichetta e l’imaging a fluorescenza, il che agevolerà uno sviluppo più rapido di nanomedicine e sistemi di nanosomministrazione sicuri ed efficaci.

Obiettivo

Nanoparticles (NPs) have become increasingly attractive for biomedical applications such as targeted drug delivery, cancer therapy,
and bioimaging due to their excellent properties. The investigation of NP-cell interactions (cellular uptake and cytotoxicity) is crucial
to the development of safe and effective use of NP in living organisms. However, current methods for studying NP-cell interactions
rely on fluorescence microscopy, and complementary methods need to be done separately. Therefore, we propose to develop a novel
imaging system that can conduct label-free photoelectrochemical imaging and fluorescence imaging simultaneously so that electrical signals from the basal side of cells and fluorescence signals can be obtained in tandem. A laser with a suitable wavelength will be used as the excitation source for both fluorescence and photocurrent. This imaging system will be validated by monitoring cell viability with
fluorescence assay and photocurrent imaging, and by monitoring the cellular uptake of model NPs to correlate the physicochemical properties of NPs to their uptake efficiency and toxicity. These validation experiments will be compared with established techniques. This system will be used to study neuron-NP interactions to reveal the mechanism of NPs’ functional effects in neuronal activities. The combined imaging system will help us gain a deeper understanding of NP-cell interactions and will offer a label-free method for assessing the toxicity of NPs in the biomedicine field. Therefore, this project will facilitate the rapid development of safe and effective nanomedicines and nano-delivery systems that allow site-specific, target-oriented delivery of precise medicines to treat and prevent various diseases. This will significantly increase the impact of nanomedicines in the clinic, increase the quality of life for an ageing population and help us respond to public health emergencies effectively.

Coordinatore

UNIVERSITY OF HAMBURG
Contribution nette de l'UE
€ 173 847,36
Indirizzo
MITTELWEG 177
20148 Hamburg
Germania

Mostra sulla mappa

Regione
Hamburg Hamburg Hamburg
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
Nessun dato

Partner (1)