Project description
Developing drugs with kinetics
The drug development process faces staggering inefficiencies, with 9 out of 10 drugs failing in human trials. A lack of efficacy and safety (primarily due to the limited predictivity of current cell culture and animal models) accounts for most failures. While advanced human cell culture models like organoids and spheroids show promise, their overly simplistic environments hinder accurate human response predictions. Additionally, these models lack temporal resolution, an essential feature of human body processes, forcing reliance on costly and less effective animal studies. The EIC-funded Dypha project introduces a solution featuring a µFluidic Adaptor. It is an innovative device that seamlessly integrates with standard 96-well plates, enabling precise, automated fluid exchange and kinetics control, thereby transforming cell culture research.
Objective
The current preclinical drug development pipeline is highly inefficient with 9 out of 10 drugs failing when first tested in humans. Of those failures, between 69% and 81% is due to a lack of efficacy (52-57%) or safety (17-24%), indicating that the predictivity of currently used cell culture and animal models is not high enough. While promising human cell culture models have arisen in the last decades (e.g. pluripotent stem cell models, spheroids, organoids), the environment of these models is too simplistic to reach their full potential and to translate certain responses to humans.
One of the important aspects missing in current cell culture is kinetics: many processes in the human body have response times with resolutions of seconds, minutes or hours. In standard cell culture however, such temporal resolution is absent because cell culture medium remains unchanged for typically 1-3 days. So for kinetics, scientists turn to animal models with relatively low translational success and high costs.
As an alternative, complex microfluidic setups have been used to enable perfusion in vitro and demonstrated a significant amount of evidence that kinetics can improve the relevance of cell culture models. Despite the evidence, typical cell culture biologists are not taking kinetics into account because the tools to control kinetics in cell culture are too complex.
We solve this problem by starting from what cell culture biologists currently use: a standard well plate. We developed a Fluidic Adaptor that can be clamped on any 96 well plate and completely replaces the fluid in the well homogenously without disturbing the cell culture. Our goal is to develop a plug-and-play peripheral system that integrates automated fluidics and microscopic readout in a fully controlled environment: the ypha System. The system uses Fluidic Adaptors that can be designed for different applications or well plate formats.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2023-TRANSITION-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7521PH Enschede
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.