Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Memristive self-organizing dendrite networks for brain-inspired computing

Project description

Self-organizing memristive dendrite networks for brain-inspired computing

AI demands a hardware revolution to increase computing power, as current technologies are energy-intensive and have significant environmental impacts. Bio-inspired technologies offer promising alternatives, with researchers developing devices that mimic the brain’s information processing. While memristive device arrays are being investigated for artificial neural networks, they have yet to replicate the adaptability and efficiency of biological neuronal circuits. The ERC-funded MEMBRAIN project aims to address this by creating a novel computing nanoarchitecture using self-organising memristive nanonetworks of dendrites. This approach will enable efficient information processing and knowledge storage directly at the material level. The project will integrate hardware and software design, bridging material science, machine learning, and neuroscience.

Objective

Artificial Intelligence needs a hardware revolution to sustain the ever-growing demand of computing power in our society, where the huge energy consumption and environmental impact of computation with current technologies is unsustainable. In the race toward future computing, bioinspired technologies have been shown as promising hardware solutions for computing beyond the Turing model and the classical von Neumann architectures. Going beyond transistor-centred hardware solutions, the research community is exploring new device concepts and architectures that leverage physical phenomena for computing “in materia” with physical laws to emulate the effectiveness of information processing capabilities of our brain. While arrays of memristive devices realised with a top-down approach represent emerging solutions for the hardware realisation of artificial neural networks, these systems do not emulate the topology and emergent behaviour of biological neuronal circuits where the principle of self-assembly and self-organisation regulates both structure and functions, providing adaptability, efficiency, and robustness. Tackling main challenges of neuromorphic computing, the MEMBRAIN project aim to develop a radically new concept of physically grounded computing nanoarchitecture based on self-organising memristive nanonetworks of dendrites, able to efficiently process information and to store knowledge on the same physical substrate at the matter level through physical laws. Overcoming the concept of nanotechnology as a simple advancement of microtechnology, the ambition is to compute like nature – thermodynamically – to push computation near fundamental limits of efficiency. By establishing a hardware-software codesign framework at the crossroads of material science, machine learning and neuroscience, the aim is to retarget the original goal of neuromorphic computing of creating general-purpose truly intelligent systems that endow dynamic learning and multitasking capability.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-STG

See all projects funded under this call

Host institution

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 487 500,00
Address
STRADA DELLE CACCE 91
10135 Torino
Italy

See on map

Region
Nord-Ovest Piemonte Torino
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 487 500,00

Beneficiaries (1)

My booklet 0 0