Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Inference in High Dimensions: Light-speed Algorithms and Information Limits

Projektbeschreibung

Algorithmen für die Auswertung hochdimensionaler Daten

Mit fortschrittlichen Computertechnologien können immense Datenmengen erfasst und gespeichert werden. In vielen wissenschaftlichen Gebieten, in denen die Daten und das maschinelle Lernen hochdimensional sind, ist es zunehmend schwierig, Daten auszuwerten und mit konventionellen Statistiktheorien genaue Schlüsse zu ziehen. Das ist besonders in der Medizin eine Herausforderung. Daher wird im ERC-finanzierten Projekt INF_2 ein theoretischer Rahmen zur hochdimensionalen Auswertung beim maschinellen Lernen und in der Datenwissenschaft aufgestellt. Anhand der Molekularfeldtheorie werden die grundlegenden Grenzen, oder Mindestdatenanforderungen, der Inferenz bestimmt und Algorithmen erarbeitet, die mit dieser minimalen Datenmenge effektiv funktionieren. Die Grundsätze werden dann an reale Anwendungen in genomweiten Assoziationsstudien angepasst.

Ziel

Extracting information from data is the key challenge of our time, and in many applications (e.g. genome-wide association studies, data compression, and virtual assistants such as ChatGPT) both the data and the machine learning model used to extract information are increasingly high-dimensional. As traditional statistical theory is ill-equipped to face this explosion in the dimensionality of the problem, machine learning is now predominantly experimental. However, empirical approaches come with huge costs affordable only to large companies, and they lack interpretability, which is especially troublesome in medical applications. To address these issues, the INF^2 project develops information-theoretically principled methods for high-dimensional inference in machine learning and data science. The key insight is that, via a “mean-field” approach, high-dimensional quantities are well approximated by low-dimensional ones and then characterized exactly. Leveraging this characterization, we will (i) establish the fundamental limits of inference, i.e. the minimal amount of data necessary to solve the problem, and (ii) design efficient algorithms requiring only the minimal amount of data. The challenge we tackle is to apply this paradigm to practical settings, in which data are structured and heterogeneous (as in genome-wide association studies), and models consist of complex architectures tailored to applications (auto-encoders for data compression, and transformers for ChatGPT). Through a novel analysis of spectral methods, approximate message passing and gradient descent, INF^2 builds a theoretical framework having conceptual impact, as well as vast applicability, in machine learning and information theory. This framework is then brought to the real world via applications in genome-wide association studies. Broadly, our results enable the principled design of machine learning algorithms and models, drastically reducing costs and providing interpretable solutions.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2024-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 662 400,00
Adresse
Am Campus 1
3400 KLOSTERNEUBURG
Österreich

Auf der Karte ansehen

Region
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 662 400,00

Begünstigte (1)

Mein Booklet 0 0