Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Inference in High Dimensions: Light-speed Algorithms and Information Limits

Descrizione del progetto

Sviluppo di algoritmi per l’inferenza di dati ad alta dimensionalità

La tecnologia informatica avanzata consente di raccogliere e archiviare enormi quantità di dati. In molte applicazioni scientifiche, in cui sia i dati che l’apprendimento automatico sono altamente dimensionali, è sempre più difficile interpretare le informazioni e trarre inferenze accurate utilizzando la teoria statistica convenzionale. Ciò rappresenta una sfida particolare per le applicazioni mediche. Per affrontare la questione, il progetto INF_2, finanziato dal CER, si propone di sviluppare un quadro teorico per l’inferenza ad alta dimensionalità nell’apprendimento automatico e nella scienza dei dati. Utilizzando un approccio di campo medio, determinerà i limiti fondamentali, o i requisiti minimi di dati, dell’inferenza e ideerà algoritmi che funzionino efficacemente con la minima quantità di dati. Tali principi saranno poi adattati alle applicazioni reali negli studi di associazione su scala genomica.

Obiettivo

Extracting information from data is the key challenge of our time, and in many applications (e.g. genome-wide association studies, data compression, and virtual assistants such as ChatGPT) both the data and the machine learning model used to extract information are increasingly high-dimensional. As traditional statistical theory is ill-equipped to face this explosion in the dimensionality of the problem, machine learning is now predominantly experimental. However, empirical approaches come with huge costs affordable only to large companies, and they lack interpretability, which is especially troublesome in medical applications. To address these issues, the INF^2 project develops information-theoretically principled methods for high-dimensional inference in machine learning and data science. The key insight is that, via a “mean-field” approach, high-dimensional quantities are well approximated by low-dimensional ones and then characterized exactly. Leveraging this characterization, we will (i) establish the fundamental limits of inference, i.e. the minimal amount of data necessary to solve the problem, and (ii) design efficient algorithms requiring only the minimal amount of data. The challenge we tackle is to apply this paradigm to practical settings, in which data are structured and heterogeneous (as in genome-wide association studies), and models consist of complex architectures tailored to applications (auto-encoders for data compression, and transformers for ChatGPT). Through a novel analysis of spectral methods, approximate message passing and gradient descent, INF^2 builds a theoretical framework having conceptual impact, as well as vast applicability, in machine learning and information theory. This framework is then brought to the real world via applications in genome-wide association studies. Broadly, our results enable the principled design of machine learning algorithms and models, drastically reducing costs and providing interpretable solutions.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2024-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 662 400,00
Indirizzo
Am Campus 1
3400 KLOSTERNEUBURG
Austria

Mostra sulla mappa

Regione
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 662 400,00

Beneficiari (1)

Il mio fascicolo 0 0