Descripción del proyecto
La investigación aborda los retos del campo de funciones
Un reto fundamental en la teoría multiplicativa de números es comprender cómo pueden descomponerse los números en sus factores primos dentro de determinados conjuntos. Los investigadores también estudian problemas complejos de factorización en campos de funciones, similares a los campos numéricos, pero en los que intervienen funciones en lugar de números. El equipo del proyecto Function Fields, financiado por el Consejo Europeo de Investigación, introduce un planteamiento innovador de estos problemas. Al limitar el tamaño de los grupos de cohomología relacionados con los haces mediante el límite de Massey y el ciclo característico, en el proyecto se ayuda a simplificar estructuras complejas. Junto con el método del círculo, el planteamiento propuesto ofrecerá soluciones eficaces a los problemas de campos de funciones. Aunque no resuelve directamente cuestiones de campos numéricos, en el proyecto se abren nuevas vías en geometría, topología y estabilidad homológica.
Objetivo
An archetypal problem in multiplicative number theory is to determine the factorization statistics in a given set, such as the set of values of an integral polynomial, or of the function raising an integer to a non-integral power and taking the integral part, the set of integers n for which there exists an integer 0 < a < n/10 such that n divides a^3-2, or the set of discriminants of cubic extensions of a number field. One is particularly interested in estimating the number of primes in such sets. We study analogs of such problems over function fields (in one variable over a finite field). Almost every problem over number fields admits a sensible (although not necessarily obvious) analog over function fields, and solutions to such problems carry over as well. On the other hand, the Riemann Hypothesis has been resolved in a most definitive form by Deligne in the function field setting. While solutions of problems over function fields do not translate to solutions of analogous problems over number fields, new insights are gained, and connections to geometry, topology, and homological stability emerge. Function field analytic number theory problems often reduce to obtaining cancellation in sums of trace functions of l-adic etale sheaves over the points of a variety over a finite field. The Grothendieck--Lefschetz trace formula, in conjunction with Delignes theorem, gives us cancellation once strong upper bounds on the dimensions of the cohomology groups of our sheaves are available. The main proposed innovation is a bound on the dimensions of cohomology groups of sheaves built using the six operations from more basic sheaves, approached using Massey's bound involving the characteristic cycle. Our methods involve also judicious choices of l for which the reduction of our sheaves mod l simplifies them. These will be combined with the circle method to serve as an off-the-shelf approach to function field problems.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras topología
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas puras aritmética números primos
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2024-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
7610001 Rehovot
Israel
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.