Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

The Mathematics of Quantum Propagation

Description du projet

Aborder les mathématiques de la propagation de l’information quantique

Les systèmes quantiques à N corps à interaction forte et à corrélation élevée sont en train de révolutionner la physique quantique moderne. Les chercheurs sont parvenus à un contrôle sans précédent des paramètres d’interaction et sont en mesure de produire de manière fiable des phénomènes fondamentaux remarquables. Ces avancées révolutionnaires remettent en question les méthodes analytiques en place et demandent des solutions mathématiques rigoureuses. Le projet MathQuantProp, financé par le CER, entend résoudre des problèmes mathématiques fondamentaux concernant les bosons de réseau et les systèmes quantiques à N corps, y compris l’existence de la limite thermodynamique de la dynamique. Il établira tout d’abord des bornes de propagation, dont des bornes de Lieb-Robinson (LRB), pour les bosons de réseau et identifiera le véritable comportement de la propagation de l’information pour ces systèmes en s’appuyant sur de nouvelles techniques analytiques. Il développera ensuite des limites de propagation, dont des LRB, pour les fermions et bosons du continuum, en tenant compte des divergences dans l’ultraviolet.

Objectif

Strongly interacting and strongly correlated quantum many-body systems are at the forefront of modern quantum physics. Experimentalists have obtained unprecedented control on the interaction parameters and are able to reliably produce striking fundamental phenomena. These problems demand a rigorous mathematical treatment, but analytical methods are extremely scarce. Outside of special scaling limits, the gold standard are Lieb-Robinson bounds (LRBs) which provide an a priori bound on the speed of information propagation with broad physical implications. However, for the important classes of (A) lattice bosons and (B) continuum fermions and continuum bosons, the standard derivations of Lieb-Robinson bounds break down because these systems have unbounded interactions.
The first goal of this project is to establish propagation bounds, including LRBs, for lattice bosons and to identify the true behavior of information propagation for these systems. This is the missing puzzle piece to develop a quantum information theory of lattice bosons that is on par with the revolutionary findings for quantum spin systems. The second goal is to develop propagation bounds, including LRBs, for continuum fermions and bosons. These systems present even more fundamental challenges due to ultraviolet divergences. As an application, I aim to close a glaring gap in our understanding of continuum quantum many-body systems: the existence of the thermodynamic limit of the dynamics. I recently developed the ASTLO method which uses bootstrapped differential inequalities, microlocal-inspired resolvent expansions, and multiscale iteration to pioneer particle propagation bounds for the paradigmatic Bose-Hubbard Hamiltonian. This resolved longstanding problems in mathematical physics. My new ASTLO method is a robust proof template. In combination with the technique of truncated dynamics, it enables me to now tackle even more challenging open problems about information propagation.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2024-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

EBERHARD KARLS UNIVERSITAET TUEBINGEN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 480 403,00
Adresse
GESCHWISTER-SCHOLL-PLATZ
72074 Tuebingen
Allemagne

Voir sur la carte

Région
Baden-Württemberg Tübingen Tübingen, Landkreis
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 480 403,00

Bénéficiaires (1)

Mon livret 0 0