Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Accurate simulations of photochemical and photophysical processes at materials interfaces

Descrizione del progetto

Modellazione accurata della fotoeccitazione e della dinamica degli stati eccitati delle interfacce dei materiali

L’irradiazione tramite la luce può indurre una serie di cambiamenti nei materiali: ad esempio, l’assorbimento della luce può innescare reazioni fotochimiche sulle superfici. Le simulazioni avanzate al computer offrono una visione dettagliata di questi processi, che possono aiutare a sviluppare nuovi dispositivi fotonici con funzioni versatili. Il progetto PhotoMat, finanziato dal CER, si propone di sviluppare metodi estremamente accurati per la previsione delle forze nucleari con stato eccitato e delle proprietà e dinamiche alle interfacce dei materiali, consentendo di calcolare dimensioni di sistemi fino a 1 000 atomi. I metodi si baseranno sulla teoria della funzione di Green ab initio.

Obiettivo

The PhotoMat project will develop highly accurate methods for the prediction of excited-state properties and dynamics of materials interfaces based on ab initio Green's function theory in the GW approximation. Insight into the intricate processes unfolding after photoexcitation is crucial to realizing the vision of materials by design. A detailed understanding of experiment requires aid from theory. However, currently there is no computational method available, which can provide reliable excited-state nuclear forces for materials. I propose here to advance the GW-Bethe-Salpeter equation formalism (BSE@GW), which is computationally very expensive. While GW is considered the gold standard for the computation of band structures, the BSE@GW scheme is the method of choice for describing the formation of excitons (bound electron-hole pairs) in materials. I recently contributed to pushing GW to system sizes of up to 1000 atoms, often required to model materials interfaces. I will leverage these advancements to overcome the restriction of BSE@GW to small systems, enabling calculations of similar size. This will be achieved by reducing the scaling of the BSE step with respect to system size combined with an efficient implementation of periodic boundary conditions and optimization of the algorithm for execution on the emerging generation of exascale supercomputers. Excited-state geometry optimization will be enabled by implementing accurate analytic nuclear BSE forces. Non-adiabatic molecular dynamics will be unlocked by combining the low-scaling BSE energies and forces with surface hopping schemes and machine learning potentials. I will employ the newly developed methods to investigate promising candidates for tailored photonic devices. This will include the study of photoisomerization reactions at 2D materials and the formation of charge-transfer excitons in moir structures. PhotoMat is here the crucial link that bridges the divide between theory and experiment.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Meccanismo di finanziamento

HORIZON-ERC - HORIZON ERC Grants

Istituzione ospitante

TECHNISCHE UNIVERSITAET DRESDEN
Contribution nette de l'UE
€ 1 493 750,00
Indirizzo
HELMHOLTZSTRASSE 10
01069 Dresden
Germania

Mostra sulla mappa

Regione
Sachsen Dresden Dresden, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 493 750,00

Beneficiari (1)