Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Scalable target identification for metabolic liver disease

Project description

New treatments for metabolic liver disease

Metabolic dysfunction-associated steatohepatitis (MASH) is a liver disease affecting up to 6 % of the general population and up to 40 % of obese individuals, often leading to severe liver conditions. Currently, only a single approved treatment exists. The ERC-funded 3DMASH project will study organotypic cultures from MASH patients and matched controls to map tissue interactions and identify new pharmacological targets. By co-culturing metabolically relevant tissues in microphysiological systems and applying network biology methods, the project will uncover extrahepatic signalling pathways that influence MASH disease phenotypes. Additionally, it will screen chemogenomic libraries of G protein-coupled receptors, ion channels and nuclear receptors to identify targets that either activate ‘healthy’ signals or inhibit ‘disease’ cues.

Objective

Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent liver disease that affects up to 6% of the general population and 15-40% of obese persons. MASH is characterized by intracellular triglyceride accumulation (steatosis), chronic inflammation and hepatocyte injury. Importantly, MASH is prone to progress into liver fibrosis, cirrhosis and hepatocellular carcinoma and, even if diagnosed early, the disease is associated with reductions in life expectancy of 2-4.5 years. Despite tremendous efforts, there are currently no approved pharmacological treatments for MASH. MASH is closely linked to obesity, sarcopenia, dyslipidemia and insulin resistance and it has become clear that adipose tissue, pancreas and skeletal muscle produce important signals that orchestrate hepatic metabolism, inflammation and fibrosis. However, the underlying mechanisms in humans remain poorly understood.
In the 3DMASH project, we will utilize organotypic cultures isolated from patients with a clinical diagnosis of MASH and matched controls to comprehensively map tissue interactions and to identify novel targets for pharmacological interventions. By combining co-culture of metabolically relevant tissues from healthy and diseased individuals in microphysiological systems (MPS) with network biology approaches, we will identify novel extrahepatic signaling that positively or negatively influence MASH disease phenotypes.
Moreover, we will use the established platform to screen chemogenomic libraries of G protein coupled receptors, ion channels and nuclear receptors to identify new pharmacologically accessible targets that activate “healthy” signals or inhibit “disease” cues. This project thus provides a conceptually novel perspective that considers MASH as a complex pathology caused by dysregulated tissue interactions and targets these disease mechanisms, which are neglected by current drug development programs, to finally develop effective treatments.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-COG

See all projects funded under this call

Host institution

KAROLINSKA INSTITUTET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 950 000,00
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 950 000,00

Beneficiaries (1)

My booklet 0 0