Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Deep-learning for structure-based discovery of adaptive immune receptors

Descrizione del progetto

L’apprendimento profondo consente di progettare recettori immunitari adattativi specifici per gli epitopi

A differenza del sistema immunitario innato, il sistema immunitario adattativo è altamente specializzato. Si rivolge all’agente patogeno specifico che causa l’infezione e lo «ricorda» per una protezione di lunga durata. Questo attacco mirato si basa sui recettori immunitari adattativi (AIR, Adaptive Immune Receptors) e sulle loro interazioni con parti specifiche degli antigeni chiamate epitopi. I metodi attuali per la mappatura degli epitopi sono costosi e a basso rendimento. Il progetto AIRstructure, finanziato dal CER, affronterà questi problemi sfruttando le competenze dei ricercatori nella modellazione delle interazioni proteina-proteina, comprese le interazioni AIR-antigene, e nel deep learning geometrico profondo. I modelli accurati e ad alto rendimento che ne deriveranno consentiranno la modellizzazione strutturale delle interazioni AIR-antigene, la progettazione di AIR epitopo-specifici e la previsione della specificità basata sulla struttura per l’estrazione di ampi repertori di AIR.

Obiettivo

B- and T- cell adaptive immune receptor (AIR) repertoires are highly diverse, enabling response to a wide range of pathogens. While sequencing of an individual's immune repertoires is becoming common, our ability to convert these datasets into comprehensive antigen exposure information to inform clinical decisions is limited. The major challenges are to identify the antigens recognized by B-cell and T-cell immune receptors (BCRs/antibodies and TCRs), model their structures and determine their epitopes. Experimental approaches for epitope mapping are costly and low-throughput. While deep learning-based models have revolutionized structural biology by predicting highly accurate structures of proteins and protein complexes, they rely on multiple sequence alignments (MSAs) that are not available for the AIR-antigen interactions. Recently, my group has designed geometric deep learning models for AIR structure modeling and for epitope prediction without MSA.
In this project, I will build on my expertise in modeling protein-protein interactions, including AIR-antigen, and in geometric deep learning to develop accurate and high-throughput models that address the specific challenges of AIR-antigen systems.
My main goals are to develop deep learning-based models for: (i) accurate and high-throughput end-to-end structure modeling of AIR-antigen interactions; (ii) design of epitope-specific AIRs for targeting broadly neutralizing epitopes and optimized antigenicity profiles; and (iii) structure-based specificity prediction for mining large AIR repertoires.
These approaches will advance the analysis of immune repertoires, improve our understanding of immune response, and enable designing vaccines and therapeutics with broad specificity and resistance to antigenic mutations. Moreover, the methods will empower the cancer epitope discovery and the detection of autoimmune receptors.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2024-COG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

THE HEBREW UNIVERSITY OF JERUSALEM
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 2 000 000,00
Indirizzo
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israele

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 2 000 000,00

Beneficiari (1)

Il mio fascicolo 0 0