Projektbeschreibung
Entwicklung epitopspezifischer adaptiver Immunrezeptoren mit Deep Learning
Im Gegensatz zum angeborenen Immunsystem ist das adaptive Immunsystem hoch spezialisiert. Es zielt auf den spezifischen Erreger einer Infektion ab und „merkt“ ihn sich für einen langanhaltenden Schutz. Dieser gezielte Angriff stützt sich auf adaptive Immunrezeptoren (AIR) und deren Interaktionen mit bestimmten Teilen von Antigenen, den sogenannten Epitopen. Die derzeitigen Methoden für die Epitopkartierung sind kostspielig bei einem geringen Durchsatz. Diese Probleme werden im ERC-finanzierten Projekt AIRstructure mit dem Fachwissen der Forschenden zur Modellierung von Protein-Protein-Interaktionen, einschließlich AIR-Antigen-Interaktionen, und zu geometrischem Deep Learning angegangen. Mit den daraus resultierenden präzisen Modellen mit hohem Durchsatz ist die strukturelle Modellierung von AIR-Antigen-Interaktionen, das Design epitop-spezifischer AIR und die strukturbasierte Spezifitätsvorhersage für die Suche nach großen AIR-Repertoires möglich.
Ziel
B- and T- cell adaptive immune receptor (AIR) repertoires are highly diverse, enabling response to a wide range of pathogens. While sequencing of an individual's immune repertoires is becoming common, our ability to convert these datasets into comprehensive antigen exposure information to inform clinical decisions is limited. The major challenges are to identify the antigens recognized by B-cell and T-cell immune receptors (BCRs/antibodies and TCRs), model their structures and determine their epitopes. Experimental approaches for epitope mapping are costly and low-throughput. While deep learning-based models have revolutionized structural biology by predicting highly accurate structures of proteins and protein complexes, they rely on multiple sequence alignments (MSAs) that are not available for the AIR-antigen interactions. Recently, my group has designed geometric deep learning models for AIR structure modeling and for epitope prediction without MSA.
In this project, I will build on my expertise in modeling protein-protein interactions, including AIR-antigen, and in geometric deep learning to develop accurate and high-throughput models that address the specific challenges of AIR-antigen systems.
My main goals are to develop deep learning-based models for: (i) accurate and high-throughput end-to-end structure modeling of AIR-antigen interactions; (ii) design of epitope-specific AIRs for targeting broadly neutralizing epitopes and optimized antigenicity profiles; and (iii) structure-based specificity prediction for mining large AIR repertoires.
These approaches will advance the analysis of immune repertoires, improve our understanding of immune response, and enable designing vaccines and therapeutics with broad specificity and resistance to antigenic mutations. Moreover, the methods will empower the cancer epitope discovery and the detection of autoimmune receptors.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2024-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
91904 JERUSALEM
Israel
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.