Project description
Robots to inspect Europe’s sewers
Europe has an estimated 3.2 million kilometres of sewers, which are primarily inspected through human analysis of CCTV footage. However, their condition is often unknown, leading to issues such as property flooding and wastewater spills into rivers. The EU-funded PIPEON project aims to develop robotic and AI technologies for autonomous sewer inspection and maintenance. These robust robots can operate in harsh sewer environments, using dexterous manipulators to install flow monitors and remove blockages caused by materials like textiles and grease. Advanced sensors and machine learning algorithms enhance navigation and detection in sewers. This technology will lower inspection costs and enable timely maintenance.
Objective
There are estimated to be 3.2 million km of sewers in Europe. Their inspection technology is based on human analysis of CCTV images. Often condition of sewers is just not known. This leads to failures such as property flooding and wastewater spills via storm sewer overflows into rivers.
PIPEON will develop robotic and AI technologies for autonomous sewer inspection and maintenance.
Robots are rugged-by-design working in the corrosive and abrasive sewer environment. They move over different surfaces, above and within the wastewater. Dexterous manipulators install flow monitors and remove blockages of different sizes made from materials such as textiles, fats and grease. Sensors, sensor fusion and sensor perception ML algorithms for feature and anomaly detection facilitate navigation and mapping in self-similar/featureless sewers and risk-aware mission planning methods reduce the risk of robot failure.
All these tools will be developed with computationally bounded resources so that robots are able to operate for days.
The use of robots automatically determining defect type and size will reduce the cost or inspecting sewer networks by at least one order of magnitude if not more.
The reduction in cost “floods” water utilities with data and allows delivers the right maintenance at the right time leading to almost “defect-free” sewer operation. Removing blockages quickly will reduce sewage spills into rivers by an estimated 30% of current numbers. This will intelligently enhance protection of Europe’s rivers and meet Europe’s zero-pollution ambitions in a sustainable, climate friendly way.
The team includes scientists from leading European research groups in robotics, in-pipe sensing, mapping, manipulation and the modelling and management of sewer networks. Leading SMEs in the areas of AI based sewer data analysis, and robotics bring knowledge of exploitation pathways. Three water utilities bring case study networks and knowledge of practical application.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyenvironmental engineeringwater treatment processeswastewater treatment processes
- engineering and technologymaterials engineeringtextiles
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringrobotics
You need to log in or register to use this function
Keywords
Programme(s)
Call for proposal
(opens in new window) HORIZON-CL4-2024-DIGITAL-EMERGING-01
See other projects for this callFunding Scheme
HORIZON-RIA - HORIZON Research and Innovation ActionsCoordinator
12616 Tallinn
Estonia