Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

High-power hydrogen fuel cell system balance of plant component up-scale and optimization

Project description

Paving the way for heavy-duty transport with advanced fuel cell technology

The heavy-duty transport sector faces a pressing challenge in reducing emissions and achieving long-term sustainability. Current proton exchange membrane fuel cell (PEMFC) systems provide electric power outputs below 200 kW, limiting their application in industries like aviation, maritime, and long-haul trucking. To address this, next-generation PEMFCs must offer higher power outputs. The EU-funded H2UpScale project aims to develop key Balance of Plant (BoP) components for PEMFC systems exceeding 250 kW, specifically designed for heavy-duty transport applications. By bringing together a consortium of research organisations, academic institutions, and industrial partners, the project will optimise critical components to enhance performance, durability, and scalability.

Objective

Proton Exchange Membrane Fuel Cells are considered as one of the solutions enabling long-term sustainable transport, however, incumbent systems provide electric power outputs below 200 kW. To cater to the need of the heavy-duty transport sectors, the development of next generation of Fuel Cell systems aims at durable PEMFC stacks offering power output between 250 and 500 kW. To support this development, the H2UpScale project aims to design, build, test and validate key BoP components for PEMFC systems generating more than 250 kW electric power suitable for heavy-duty transport applications (aviation, maritime, on-road long-haul).
H2UpScale brings together 3 research organisations, 2 academic and 11 industrial partners, including BoP manufacturers and OEMs. The project will identify application-specific requirements, that will then drive the requirements, development and optimization of 3 standards for modular and scalable PEMFC architectures 250kW (electrical power supply architectures & waste heat management system designs).The BoP components in focus include the hydrogen ejector, H2 recirculation pump, H2 leakage sensor, air compressor, cathode air filter and air humidifier, water separator, exhaust resonator, coolant heat exchanger and coolant medium. The targeted advancements for BoP components include efficiency and durability improvements, weight and volume reduction, and architecture simplification. The components will be designed to be compatible with both single- and multi-stack platforms, with scalability and modularity in mind, facilitating their integration into multi-MW scale systems. Selected full-scale BoP components will be validated on a Hardware-in-the-Loop test bench and a techno-economic analysis of the potential impact of the developed BoP components on the HD markets will be performed. With these main targets, the aim for H2UpScale is to provide critical technological bricks enabling the creation of a TRL7 demonstrator from 2027 onwards.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Coordinator

NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK TNO
Net EU contribution
€ 593 989,08
Total cost
No data

Participants (15)