Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Real-time reconstruction of epidemic dynamics from viral phylogenies using Deep Learning

Descripción del proyecto

Reconstrucción en tiempo real de la dinámica de epidemias

La pandemia de COVID-19 demostró la importancia de comprender cómo se propagan las pandemias en tiempo real a fin de lograr una preparación y respuesta más eficaces en materia de salud pública. Los métodos tradicionales que dependen de los casos notificados pueden ser sesgados o incompletos, sobre todo en regiones con recursos limitados. El proyecto Deep EpiDyn, que cuenta con el respaldo de las acciones Marie Skłodowska-Curie, tiene por objeto desarrollar un método diferente para la vigilancia de epidemias mediante la combinación de la evolución vírica y el aprendizaje profundo. Los investigadores se proponen entrenar modelos que relacionen la información sobre la evolución vírica con indicadores epidemiológicos básicos como la tasa de transmisión y el periodo infeccioso. Este método promete un análisis más rápido, preciso y en tiempo real, lo que mejorará la vigilancia de las enfermedades infecciosas y la preparación ante ellas.

Objetivo

Reconstructing epidemic dynamics in real-time has become crucial for effective disease management, as demonstrated by the COVID-19 pandemic. Traditional methods rely on epidemiological data (e.g. reported cases), which can be biased or incomplete due to variable testing policies, particularly in resource-limited settings. Instead, phylodynamics has emerged as a valuable toolkit for using viral phylogenies to understand epidemic dynamics. However, conventional phylodynamic methods rely on mathematical formulas and approximations, which are not scalable to large datasets and are time-consuming, limiting their use primarily to retrospective rather than real-time analysis.

This proposal aims to transform phylodynamics by integrating it with deep learning to bypass the cumbersome likelihood calculations, thereby facilitating real-time analysis directly from sequence data. I will develop innovative deep learning models to explore the relationships between phylogenetic trees and epidemiological parameters of viruses with epidemic potential, such as SARS-CoV-2, influenza, RSV, and mpox. These models are designed to rapidly and accurately estimate time-varying epidemiological metrics, including transmission heterogeneity, basic reproduction numbers, infectious and incubation periods.

This initiative is set to revolutionize our ability to model and comprehend infectious diseases in real-time, elevating sequence data to a critical, standalone data source. It will incorporate cross-validation with epidemiological inference from reported cases and wastewater analyses, reducing reliance on any single data source and enhancing both public health responses and infectious disease surveillance. Furthermore, by simulating incremental data collection that reflects real outbreak conditions, this project will evaluate the sensitivity of real-time estimations and determine the necessary sampling proportions to accurately represent epidemic dynamics. This approach will yield crucial

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2024-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 276 187,92
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0