Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Real-time reconstruction of epidemic dynamics from viral phylogenies using Deep Learning

Projektbeschreibung

Echtzeit-Rekonstruktion der Epidemiedynamik

Die COVID-19-Pandemie hat gezeigt, wie wichtig ein Verständnis dessen ist, wie sich Pandemien in Echtzeit ausbreiten, damit das öffentliche Gesundheitswesen besser vorbereitet ist und angemessen reagieren kann. Traditionelle Methoden, die sich auf gemeldete Falldaten stützen, können verzerrt oder unvollständig sein, insbesondere in Regionen mit begrenzten Ressourcen. Das über die Marie-Skłodowska-Curie-Maßnahmen unterstützte Projekt Deep EpiDyn schlägt einen neuen Ansatz an die Überwachung von Epidemien durch eine Kombination von viraler Evolution und Deep Learning vor. Die Forschenden wollen Modelle trainieren, um Informationen über die virale Entwicklung mit epidemiologischen Schlüsselindikatoren wie der Übertragungsrate und Infektionsdauer zu verknüpfen. Dieser Ansatz verspricht schnellere, genauere Analysen in Echtzeit, die die Krankheitsüberwachung und -vorsorge verbessern.

Ziel

Reconstructing epidemic dynamics in real-time has become crucial for effective disease management, as demonstrated by the COVID-19 pandemic. Traditional methods rely on epidemiological data (e.g. reported cases), which can be biased or incomplete due to variable testing policies, particularly in resource-limited settings. Instead, phylodynamics has emerged as a valuable toolkit for using viral phylogenies to understand epidemic dynamics. However, conventional phylodynamic methods rely on mathematical formulas and approximations, which are not scalable to large datasets and are time-consuming, limiting their use primarily to retrospective rather than real-time analysis.

This proposal aims to transform phylodynamics by integrating it with deep learning to bypass the cumbersome likelihood calculations, thereby facilitating real-time analysis directly from sequence data. I will develop innovative deep learning models to explore the relationships between phylogenetic trees and epidemiological parameters of viruses with epidemic potential, such as SARS-CoV-2, influenza, RSV, and mpox. These models are designed to rapidly and accurately estimate time-varying epidemiological metrics, including transmission heterogeneity, basic reproduction numbers, infectious and incubation periods.

This initiative is set to revolutionize our ability to model and comprehend infectious diseases in real-time, elevating sequence data to a critical, standalone data source. It will incorporate cross-validation with epidemiological inference from reported cases and wastewater analyses, reducing reliance on any single data source and enhancing both public health responses and infectious disease surveillance. Furthermore, by simulating incremental data collection that reflects real outbreak conditions, this project will evaluate the sensitivity of real-time estimations and determine the necessary sampling proportions to accurately represent epidemic dynamics. This approach will yield crucial

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2024-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 276 187,92
Adresse
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Vereinigtes Königreich

Auf der Karte ansehen

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0