Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Real-time reconstruction of epidemic dynamics from viral phylogenies using Deep Learning

Descrizione del progetto

Ricostruzione in tempo reale delle dinamiche epidemiche

La pandemia di COVID-19 ha dimostrato l’importanza di capire come si diffondono le pandemie in tempo reale per una preparazione e una risposta più efficace in materia di salute pubblica. I metodi tradizionali che si basano sui dati dei casi segnalati possono essere distorti o incompleti, soprattutto nelle regioni con risorse limitate. Con il sostegno del programma di azioni Marie Skłodowska-Curie, il progetto Deep EpiDyn propone un approccio diverso al monitoraggio delle epidemie attraverso la combinazione di evoluzione virale e apprendimento profondo. I ricercatori intendono addestrare modelli per collegare le informazioni sull’evoluzione virale con indicatori epidemiologici chiave come il tasso di trasmissione e il periodo infettivo. Questo approccio promette analisi più rapide, accurate e in tempo reale, migliorando il monitoraggio delle malattie e la preparazione.

Obiettivo

Reconstructing epidemic dynamics in real-time has become crucial for effective disease management, as demonstrated by the COVID-19 pandemic. Traditional methods rely on epidemiological data (e.g. reported cases), which can be biased or incomplete due to variable testing policies, particularly in resource-limited settings. Instead, phylodynamics has emerged as a valuable toolkit for using viral phylogenies to understand epidemic dynamics. However, conventional phylodynamic methods rely on mathematical formulas and approximations, which are not scalable to large datasets and are time-consuming, limiting their use primarily to retrospective rather than real-time analysis.

This proposal aims to transform phylodynamics by integrating it with deep learning to bypass the cumbersome likelihood calculations, thereby facilitating real-time analysis directly from sequence data. I will develop innovative deep learning models to explore the relationships between phylogenetic trees and epidemiological parameters of viruses with epidemic potential, such as SARS-CoV-2, influenza, RSV, and mpox. These models are designed to rapidly and accurately estimate time-varying epidemiological metrics, including transmission heterogeneity, basic reproduction numbers, infectious and incubation periods.

This initiative is set to revolutionize our ability to model and comprehend infectious diseases in real-time, elevating sequence data to a critical, standalone data source. It will incorporate cross-validation with epidemiological inference from reported cases and wastewater analyses, reducing reliance on any single data source and enhancing both public health responses and infectious disease surveillance. Furthermore, by simulating incremental data collection that reflects real outbreak conditions, this project will evaluate the sensitivity of real-time estimations and determine the necessary sampling proportions to accurately represent epidemic dynamics. This approach will yield crucial

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-MSCA-2024-PF-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 276 187,92
Indirizzo
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Regno Unito

Mostra sulla mappa

Regione
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0