Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Exploring photoexcitation-induced dynamic evolution of the small molecule activation at point defects

Ziel

"For the photocatalytic reduction of inert small molecules using nanomaterials, surface point defects (such as vacancies and heteroatoms) play an important regulatory role. In particular, promoting the activation of adsorbed molecules is directly related to the subsequent multi-step reaction. Traditional simulations mainly focus on the relationship between the ground state fixation model and activation, while ignoring the exploration of the influence of dynamic evolution of defects and molecules on the activation process in the photoexcitation environment. Through the combination of first-principles, many-body perturbation theory, ab initio nonadiabatic molecular dynamics, and experimental verification, we will explore the dynamic evolution and the mechanism of the adsorbed molecule activation process at point defects under photoexcitation. 1) We will study the relaxation process of photogenerated hot electrons at point defects, analyze the formation and evolution of transient and vibrationally excited states of adsorbed molecules, and expand the static activation based on the conventional ""acceptance-donation"" mechanism. Simultaneously, by exploring the spin state transition and exciton effect at the point defects, we will reveal their effects on the lifetime of molecular dynamic activation intermediates. 2) By studying the dynamic evolution of point defects under molecular adsorption and photoexcitation, we will clarify the regulatory effect of point defects in semi-stable states on the evolution of adsorbed molecular excited states. 3) We will explore the effect of liquid-solid interfaces on the dynamic activation process of small molecules under photoexcitation. The implementation of this project will help resolve many contradictions between the static mechanism and the experimental results, and it will provide a reliable theoretical basis for the photocatalytic performance optimization of point defects."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Koordinator

TECHNISCHE UNIVERSITAET DRESDEN
Netto-EU-Beitrag
€ 217 965,12
Adresse
HELMHOLTZSTRASSE 10
01069 Dresden
Deutschland

Auf der Karte ansehen

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
Keine Daten