Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Exploring photoexcitation-induced dynamic evolution of the small molecule activation at point defects

Obiettivo

"For the photocatalytic reduction of inert small molecules using nanomaterials, surface point defects (such as vacancies and heteroatoms) play an important regulatory role. In particular, promoting the activation of adsorbed molecules is directly related to the subsequent multi-step reaction. Traditional simulations mainly focus on the relationship between the ground state fixation model and activation, while ignoring the exploration of the influence of dynamic evolution of defects and molecules on the activation process in the photoexcitation environment. Through the combination of first-principles, many-body perturbation theory, ab initio nonadiabatic molecular dynamics, and experimental verification, we will explore the dynamic evolution and the mechanism of the adsorbed molecule activation process at point defects under photoexcitation. 1) We will study the relaxation process of photogenerated hot electrons at point defects, analyze the formation and evolution of transient and vibrationally excited states of adsorbed molecules, and expand the static activation based on the conventional ""acceptance-donation"" mechanism. Simultaneously, by exploring the spin state transition and exciton effect at the point defects, we will reveal their effects on the lifetime of molecular dynamic activation intermediates. 2) By studying the dynamic evolution of point defects under molecular adsorption and photoexcitation, we will clarify the regulatory effect of point defects in semi-stable states on the evolution of adsorbed molecular excited states. 3) We will explore the effect of liquid-solid interfaces on the dynamic activation process of small molecules under photoexcitation. The implementation of this project will help resolve many contradictions between the static mechanism and the experimental results, and it will provide a reliable theoretical basis for the photocatalytic performance optimization of point defects."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Coordinatore

TECHNISCHE UNIVERSITAET DRESDEN
Contribution nette de l'UE
€ 217 965,12
Indirizzo
HELMHOLTZSTRASSE 10
01069 Dresden
Germania

Mostra sulla mappa

Regione
Sachsen Dresden Dresden, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
Nessun dato