Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Poisson cohomology and linearization for simple Lie algebras

Descripción del proyecto

Resolución del problema de linealización local para álgebras de Lie simples

La cuestión de la forma normal local es fundamental para cualquier estructura geométrica. En la geometría de Poisson, esto está relacionado de forma directa con las álgebras de Lie, ya que cualquier álgebra de Lie es equivalente a una estructura lineal de Poisson en su dual. La cuestión de si una estructura de Poisson singular siempre puede linealizarse localmente fue planteada por Weinstein en 1983. Sin embargo, el problema sigue sin resolverse en el caso de las álgebras de Lie simples. En el proyecto PCHL, que cuenta con el apoyo de las acciones Marie Skłodowska-Curie, se pretende resolver este problema y avanzar hacia una respuesta completa. Para ello, se combinarán técnicas de la teoría de la foliación, la geometría simpléctica y el álgebra homológica, al tiempo que se desarrollarán y aplicarán nuevas técnicas de geometría algebraica, teoría de la representación y análisis funcional.

Objetivo

Given a geometric structure, can we find local coordinates such that the structure has a particular nice expression?
That is one of the most fundamental questions for any geometric structure, that of a local normal form. In Poisson geometry, this question is directly related to the study of Lie algebras, as any Lie algebra is equivalent to a linear Poisson structure on its dual.
Given a Poisson structure with a singularity, can we locally identify the Poisson structure always with its linear (first order) version around the singularity?
This question was first asked by Weinstein his seminal work on Poisson manifolds in 1983. However, even for (semi)simple Lie algebras, this question has not been completely resolved, despite several results. In particular, it is not know for (semi)simple Lie algebra of real rank one with semisimple compact part. In this project we aim to resolve the problem for all remaining simple Lie algebras, taking an important step towards a complete answer.
In the lowest dimensional case, that of so(3,1), an affirmative, positive answer has been provided by myself in my PhD thesis. This is the first non-compact example with a known positive answer.
The general strategy is the following:
1) Show that the cohomology group controlling the deformation problem vanishes and find sufficiently nice cochain homotopies
2) Apply a Nash-Moser type inverse function theorem to establish linearization
Generalizing the ideas of the proof to all simple Lie algebras will bring together techniques from foliation theory, symplectic geometry, homological algebra. Additionally it will require developing and applying new techniques in algebraic geometry, representation theory and functional analysis, specifically adapted to the Lie algebras under consideration and their stratification by (co)adjoint orbits.
As such, the result will be highly influential and interesting for several areas of Mathematics.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2024-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 260 347,92
Dirección
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Reino Unido

Ver en el mapa

Región
London Inner London — West Westminster
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0