Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Poisson cohomology and linearization for simple Lie algebras

Opis projektu

Rozwiązanie problemu lokalnej linearyzacji dla prostych algebr Liego

Kwestia lokalnej postaci normalnej jest fundamentalna w każdej strukturze geometrycznej. W geometrii Poissona jest to bezpośrednio związane z algebrami Liego, ponieważ każda algebra Liego jest równoważna liniowej strukturze Poissona na jej dualu. Pytanie, czy pojedyncza struktura Poissona może być zawsze lokalnie linearyzowana, zostało postawione przez Weinsteina w 1983 r. Problem ten pozostaje jednak nadal otwarty w przypadku prostych algebr Liego. Wspierany przez program działań „Maria Skłodowska-Curie” projekt PCHL przewiduje rozwiązanie tego problemu w przypadku prostych algebr Liego, co będzie stanowić krok w kierunku pełnej odpowiedzi. W tym celu zespół połączy techniki z teorii foliacji, geometrii symplektycznej i algebry homologicznej, jednocześnie rozwijając i stosując nowe techniki z geometrii algebraicznej, teorii reprezentacji i analizy funkcjonalnej.

Cel

Given a geometric structure, can we find local coordinates such that the structure has a particular nice expression?
That is one of the most fundamental questions for any geometric structure, that of a local normal form. In Poisson geometry, this question is directly related to the study of Lie algebras, as any Lie algebra is equivalent to a linear Poisson structure on its dual.
Given a Poisson structure with a singularity, can we locally identify the Poisson structure always with its linear (first order) version around the singularity?
This question was first asked by Weinstein his seminal work on Poisson manifolds in 1983. However, even for (semi)simple Lie algebras, this question has not been completely resolved, despite several results. In particular, it is not know for (semi)simple Lie algebra of real rank one with semisimple compact part. In this project we aim to resolve the problem for all remaining simple Lie algebras, taking an important step towards a complete answer.
In the lowest dimensional case, that of so(3,1), an affirmative, positive answer has been provided by myself in my PhD thesis. This is the first non-compact example with a known positive answer.
The general strategy is the following:
1) Show that the cohomology group controlling the deformation problem vanishes and find sufficiently nice cochain homotopies
2) Apply a Nash-Moser type inverse function theorem to establish linearization
Generalizing the ideas of the proof to all simple Lie algebras will bring together techniques from foliation theory, symplectic geometry, homological algebra. Additionally it will require developing and applying new techniques in algebraic geometry, representation theory and functional analysis, specifically adapted to the Lie algebras under consideration and their stratification by (co)adjoint orbits.
As such, the result will be highly influential and interesting for several areas of Mathematics.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2024-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 260 347,92
Adres
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Zjednoczone Królestwo

Zobacz na mapie

Region
London Inner London — West Westminster
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0