Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-28

Iwasawa theory of p-adic Lie extensions

Objectif

One of the most challenging topics in modern number theory is the mysterious relation between special values of L-functions and Galois cohomology: they are the “shadows” in the two completely different worlds of complex and p-adic analysis of one and the same geometric object, viz the space of solutions for a given diophantine equation over the integral numbers, or more generally a motive M. The main idea of Iwasawa theory is to study manifestations of this principle such as the class number formula or the Birch and Swinnerton Dyer Conjecture simultaneously for whole p-adic families of such motives, which arise e.g. by considering towers of number fields or by (Hida) families of modular forms. The aim of this project is to supply further evidence for I. the existence of p-adic L-functions and for main conjectures in (non-commutative) Iwasawa theory, II. the (equivariant) epsilon-conjecture of Fukaya and Kato as well as III. the 2-variable main conjecture of Hida families. In particular, we hope to construct the first genuine “non-commutative” p-adic L-function as well as to find (non-commutative) examples fulfilling the expectation that the epsilon-constants, which are determined by the functional equations of the corresponding L-functions, build p-adic families themselves. In the third item a systematic study of Lie groups over pro-p-rings and Big Galois representations is planned with applications to the arithmetic of Hida families.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2007-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Contribution de l’UE
€ 500 000,00
Adresse
SEMINARSTRASSE 2
69117 Heidelberg
Allemagne

Voir sur la carte

Région
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0