Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Mathematical Problems in Superconductivity and Bose-Einstein Condensation

Objectif

This project in mathematical physics is concerned with the mathematical understanding of superconductivity and Bose-Einstein condensation. These physical phenomena are the subject of intense research activity both in the experimental and theoretical physics communities and in mathematics. However, despite a lot of effort, many key questions lack a mathematically rigorous answer. The ambition of the present project is to improve this situation. I plan to analyze both the effective models and the underlying microscopic description of superconductivity and Bose-Einstein condensation. The effective models are (systems of) non-linear partial differential equations, and I will apply recently developed mathematical techniques for their analysis. To mention an important specific problem in this part of the project, I am interested in the appearance of regular (Abrikosov) lattices of vortices. For superconductivity, which I will treat in the Ginzburg-Landau model, it is an experimental fact that this happens when an exterior magnetic field comes close to a critical value. For rotating Bose-Einstein condensates, in the Gross-Pitaevskii model, a similar phenomenon occurs for sufficiently large rotations. However, as yet we are unable to derive these lattices directly from the relevant equations. Even more fundamental are the questions about the microscopic models. The aim here is to prove that the desired condensation actually occurs under conditions relevant to experiment, i.e. to prove that the condensation phenomena are correctly described by our fundamental equations of Nature. The microscopic models are systems with a large number of variables and developing the mathematical techniques necessary for the analysis of such systems is an important question in current research in Mathematics.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2007-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

AARHUS UNIVERSITET
Contribution de l’UE
€ 749 571,42
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0