Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Poisson Algebras, deformations and resolutions of singularities

Objetivo

"The general topics of this proposal are Poisson algebras, their quantisations and their resolutions. Poisson algebras first appeared in the work of Poisson two centuries ago when he was studying the three-body problem in celestial mechanics. Since then, Poisson algebras have been shown to be connected to many areas of mathematics and physics (differential geometry, Lie groups and representation theory, noncommutative geometry, integrable systems, quantum field theory...) and so, because of its wide range of applications, their study is of great interest for both mathematicians and theoretical physicists. Currently, this subject is one of the most active in both mathematics and mathematical physics. One way to approach Poisson algebras is via quantisation. In this context, Poisson algebras are the semiclassical limits of noncommutative algebras. Naturally, this suggests that the underlying geometry of a Poisson algebra should be intimately connected to the noncommutative geometry of the corresponding ""quantum'' noncommutative algebra; the noncommutative geometry of the ""quantum'' spaces is closely related to the geometry of the space of symplectic leaves. The first main aim of this proposal is to gain a better understanding of the link between Poisson algebras and their ""quantum counterparts'', and then, of course, use it to derive some new results on Poisson and ""quantum'' algebras. In the singular case, another way to attack (singular) Poisson algebras is to consider their resolutions of singularities. Roughly speaking, the idea is to attach to a singular Poisson algebra another Poisson algebra that is smooth and that keeps track, at least on the smooth part, of the Poisson structure of the original singular Poisson algebra. The second aim of this project is to study such resolutions; more precisely, we will study the relationship between symplectic singularities and their symplectic resolutions from the point-of-view of representation theory and combinatorics."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2007-2-2-ERG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-ERG - European Re-integration Grants (ERG)

Coordinador

UNIVERSITY OF KENT
Aportación de la UE
€ 45 000,00
Dirección
THE REGISTRY CANTERBURY
CT2 7NZ Canterbury, Kent
Reino Unido

Ver en el mapa

Región
South East (England) Kent East Kent
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0