Obiettivo
"The general topics of this proposal are Poisson algebras, their quantisations and their resolutions. Poisson algebras first appeared in the work of Poisson two centuries ago when he was studying the three-body problem in celestial mechanics. Since then, Poisson algebras have been shown to be connected to many areas of mathematics and physics (differential geometry, Lie groups and representation theory, noncommutative geometry, integrable systems, quantum field theory...) and so, because of its wide range of applications, their study is of great interest for both mathematicians and theoretical physicists. Currently, this subject is one of the most active in both mathematics and mathematical physics. One way to approach Poisson algebras is via quantisation. In this context, Poisson algebras are the semiclassical limits of noncommutative algebras. Naturally, this suggests that the underlying geometry of a Poisson algebra should be intimately connected to the noncommutative geometry of the corresponding ""quantum'' noncommutative algebra; the noncommutative geometry of the ""quantum'' spaces is closely related to the geometry of the space of symplectic leaves. The first main aim of this proposal is to gain a better understanding of the link between Poisson algebras and their ""quantum counterparts'', and then, of course, use it to derive some new results on Poisson and ""quantum'' algebras. In the singular case, another way to attack (singular) Poisson algebras is to consider their resolutions of singularities. Roughly speaking, the idea is to attach to a singular Poisson algebra another Poisson algebra that is smooth and that keeps track, at least on the smooth part, of the Poisson structure of the original singular Poisson algebra. The second aim of this project is to study such resolutions; more precisely, we will study the relationship between symplectic singularities and their symplectic resolutions from the point-of-view of representation theory and combinatorics."
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica applicata fisica matematica
- scienze naturali matematica matematica pura algebra
- scienze naturali scienze fisiche astronomia planetologia meccanica celeste
- scienze naturali matematica matematica pura geometria
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP7-PEOPLE-2007-2-2-ERG
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
CT2 7NZ Canterbury, Kent
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.