Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Combinatorial methods, from enumerative topology to random discrete structures and compact data representations

Objetivo

"Our aim is to built on recent combinatorial and algorithmic progress to attack a series of deeply connected problems that have independantly surfaced in enumerative topology, statistical physics, and data compression. The relation between these problems lies in the notion of ""combinatorial map"", the natural discrete mathematical abstraction of objects with a 2-dimensional structures (like geographical maps, computer graphics' meshes, or 2d manifolds). A whole new set of properties of these maps has been uncovered in the last few years under the impulsion of the principal investigator. Rougly speaking, we have shown that classical graph exploration algorithms, when correctly applied to maps, lead to remarkable decompositions of the underlying surfaces. Our methods resort to algorithmic and enumerative combinatorics. In statistical physics, these decompositions offer an approach to the intrinsec geometry of discrete 2d quantum gravity: our method is here the first to outperform the celebrated ""topological expansion of matrix integrals"" of Brezin-Itzykson-Parisi-Zuber. Exploring its implications for the continuum limit of these random geometries is our great challenge now. From a computational geometry perspective, our approach yields the first encoding schemes with asymptotically optimal garanteed compression rates for the connectivity of triangular or polygonal meshes. These schemes improve on a long series of heuristically efficient but non optimal algorithms, and open the way to optimally compact data structures. Finally we have deep indications that the properties we have uncovered extend to the realm of ramified coverings of the sphere. Intriguing computations on the fundamental Hurwitz's numbers have been obtained using the ELSV formula, famous for its use by Okounkov et al. to rederive Kontsevich's model. We believe that further combinatorial progress here could allow to bypass the formula and obtaine an elementary explanation of these results."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2007-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Aportación de la UE
€ 750 000,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0