Obiettivo
The electric ship concept offers many benefits; among other aspects if offers flexibility of control and effectiveness of power transmission. But predominantly it enables higher energy conversion efficiency by ensuring that prime movers are effectively loaded at all times and across all operating conditions. This dominating advantage cannot be matched by mechanical transmission systems because gearboxes offer little chance of integrating a high number of prime movers in the restricted space of a ship whereas this integration is straight forward when managed electrically. Thus the electric ship concept offers reduced emissions through improved efficiency of engine operation but critically it offers significant reduced emissions during the critical phase of entry to littoral water when with speed generally reduced engines in a mechanical systems become very lightly loaded.
It is proposed to enhance the electric ship concept so it suits a wider range of vessels than currently. The principal barrier to adoption of the electric ship concept in merchant ships is the size of the equipment. However if size reductions can be achieved then adopting the electric ship concept in a wider range of merchant ships will, as described above, reduce emissions and improve the impact on global warming. Overall this impact will be significant given the current and anticipated levels of global trade and the proportion to be moved by sea transport.
This challenging ambition, to enable the adoption of the electric ship concept in a wider range of merchant ships, will demand the development of new technologies across all of marine electrical engineering:
1. High Temperature Superconductivity (HTS): This is a technology that allows smaller principal electrical components and an increase in efficiency.
2. Wireless monitoring: This provides simpler internal control communication and enables the adoption of more advanced control regimes (as offered by the electrification of propulsion).
3. Harbour Shore Electrical Supplies: Running lightly loaded generators in harbour - as is commonly the practice among merchant ship operators - threatens the environment in a sensitive zone. The lack of any propulsion load prevents loading the generators more effectively. The answer is to supply the ship with electricity from shore connections. This does not need technological innovation but the widespread adoption of shore supplies demands standardisation among connectors and mode of electrical supply that has yet to be investigated.
4. Electrical actuation: This is a technology which aims to replace mechanically actuated auxiliaries by using direct electrical actuators and reduces size, cost, maintenance and improves efficiency
The benefits of these proposed innovations will be tested by developing designs for specific ship types: multi-purpose, cruise and container. The integration process will be composed of 6 steps:
1 Ship mission
2 Energy consumers
3 Draft design
4 Performance simulations
5 Final design
6 Environmental impact.
To reduce costs only the design for the multi-purpose ship will be taken through all the six steps. The remaining 2 ship types will only be taken through steps 1 to 3.
Finally, the innovative HTSC technology will be demonstrated in a land demonstrator, scaled as much as possible to reduce costs, while retaining relevance of the demonstration to full scale implementation. This demonstrator will include: the propulsion system, including an HTSC propulsion motor and its power converter, a DC distribution system with innovative protection and an HTSC segment, and various auxiliary loads.
Campo scientifico
Parole chiave
Argomento(i)
Invito a presentare proposte
FP7-SST-2007-RTD-1
Vedi altri progetti per questo bando
Meccanismo di finanziamento
CP-IP - Large-scale integrating projectCoordinatore
TW11 8LZ TEDDINGTON
Regno Unito
Mostra sulla mappa
Partecipanti (33)
Partecipazione conclusa
93170 BAGNOLET
Mostra sulla mappa
44150 SAINT HERBLON
Mostra sulla mappa
28203 Bremen
Mostra sulla mappa
1040 BRUXELLES
Mostra sulla mappa
92200 NEUILLY SUR SEINE
Mostra sulla mappa
CV21 1BU RUGBY, WARWICKSHIRE
Mostra sulla mappa
75015 Paris
Mostra sulla mappa
1363 Hovik
Mostra sulla mappa
75008 PARIS
Mostra sulla mappa
59460 Jeumont
Mostra sulla mappa
6708 PM Wageningen
Mostra sulla mappa
29000 QUIMPER
Mostra sulla mappa
53115 Bonn
Mostra sulla mappa
NE1 7RU Newcastle Upon Tyne
Mostra sulla mappa
92400 Courbevoie
Mostra sulla mappa
Partecipazione conclusa
5330 Munkebo
Mostra sulla mappa
DE24 8BJ Derby
Mostra sulla mappa
92300 Levallois Perret
Mostra sulla mappa
22763 HAMBURG
Mostra sulla mappa
44340 Bouguenais
Mostra sulla mappa
Partecipazione conclusa
92110 CLICHY
Mostra sulla mappa
Partecipazione conclusa
53359 RHEINBACH
Mostra sulla mappa
35760 Saint-Gregoire
Mostra sulla mappa
30179 Hannover
Mostra sulla mappa
98693 Ilmenau
Mostra sulla mappa
FIN-65101 VAASA
Mostra sulla mappa
2595 DA Den Haag
Mostra sulla mappa
20457 Hamburg
Mostra sulla mappa
44600 Saint Nazaire
Mostra sulla mappa
4381 NK Vlissingen
Mostra sulla mappa
Partecipazione conclusa
75015 PARIS
Mostra sulla mappa
Partecipazione conclusa
20459 Hamburg
Mostra sulla mappa
44100 NANTES
Mostra sulla mappa