Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

The evolution of genetic robustness

Objective

Most genes are not required for viability. This robustness to mutation is a fundamental property of complex biological systems but the mechanism(s) underlying it and how it evolves is unclear. It has been proposed that robustness can result from genetic redundancy through gene duplication and the distributed nature of biological networks. The robustness of both yeast and C. elegans has been dissected using genetic interaction screens, where combinations of mutations are screened for a synthetic effect (i.e. a stronger phenotype than the phenotype of each individual mutation). Since many human diseases are likely to be caused by combinatorial effects between mutations it is important to understand the underlying mechanisms of genetic interactions and also whether genetic interactions in model organisms can be used to predict interactions in humans. In the current work, using phylogenetic analysis we aim to systematically investigate whether genetic redundancy between gene duplicates is maintained across extensive evolutionary periods. As a second aspect of this work, we will use experiments in C. elegans to test whether the connectivity of a gene within a genetic interaction network is conserved between species, despite the fact that individual connections are under high turnover. To gain deeper understanding of the mechanisms underlying genetic interactions we will also investigate the contribution of transcription regulatory interactions to genetic interaction networks. In brief, this proposal aims to investigate the mechanisms and evolution of genetic robustness to mutation. The results will provide a framework for understanding and predicting how mutations combine to cause disease in humans. Moreover the Fellowship will also provide the applicant with advanced training in Systems Biology and in the experimental and computational analysis of genetic networks, and will establish her as an independent scientific investigator.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

FUNDACIO CENTRE DE REGULACIO GENOMICA
EU contribution
€ 151 936,08
Address
CARRER DOCTOR AIGUADER 88
08003 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0