Objetivo
Let G be a reductive linear algebraic group over the complex numbers. A G-variety, an algebraic variety with an algebraic action of the group G, is said to be spherical if it is normal and has an open orbit for a maximal connected solvable subgroup of G. We aim to complete the classification of spherical varieties by proving Luna's conjecture on a special class of spherical varieties, called wonderful. To a wonderful variety one can naturally associate an invariant combinatorial object in terms of roots and weights, called spherical system. Luna's conjecture states that there exists a one-to-one correspondence between isomorphism classes of wonderful varieties and spherical systems. Given a spherical system, here we want to provide the corresponding wonderful variety by studying the geometric properties of a certain algebraic scheme, called invariant Hilbert scheme, recently introduced by Alexeev and Brion. The given reductive group G acts linearly on the ring of regular functions of any affine spherical G-variety, the corresponding linear representation is multiplicity-free. The invariant Hilbert scheme of Alexeev and Brion parameterises the affine spherical G-varieties with a fixed multiplicity-free representation in their ring of regular functions. It is endowed with an action of a maximal torus of the group G. Given a spherical system, the strategy is to define a suitable multiplicity-free representation and study the corresponding invariant Hilbert scheme. Via deformation theory arguments we want to prove that under certain conditions the considered invariant Hilbert scheme has an open orbit for the toric action. By a standard procedure, called spherical closure, one can associate to any spherical variety a wonderful variety. Here we want to prove that to an affine spherical variety corresponding to a generic point in the invariant Hilbert scheme it is associated a wonderful variety with the given spherical system.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
FP7-PEOPLE-2007-2-1-IEF
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Coordinador
38041 GRENOBLE
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.