Cel
Let G be a reductive linear algebraic group over the complex numbers. A G-variety, an algebraic variety with an algebraic action of the group G, is said to be spherical if it is normal and has an open orbit for a maximal connected solvable subgroup of G. We aim to complete the classification of spherical varieties by proving Luna's conjecture on a special class of spherical varieties, called wonderful. To a wonderful variety one can naturally associate an invariant combinatorial object in terms of roots and weights, called spherical system. Luna's conjecture states that there exists a one-to-one correspondence between isomorphism classes of wonderful varieties and spherical systems. Given a spherical system, here we want to provide the corresponding wonderful variety by studying the geometric properties of a certain algebraic scheme, called invariant Hilbert scheme, recently introduced by Alexeev and Brion. The given reductive group G acts linearly on the ring of regular functions of any affine spherical G-variety, the corresponding linear representation is multiplicity-free. The invariant Hilbert scheme of Alexeev and Brion parameterises the affine spherical G-varieties with a fixed multiplicity-free representation in their ring of regular functions. It is endowed with an action of a maximal torus of the group G. Given a spherical system, the strategy is to define a suitable multiplicity-free representation and study the corresponding invariant Hilbert scheme. Via deformation theory arguments we want to prove that under certain conditions the considered invariant Hilbert scheme has an open orbit for the toric action. By a standard procedure, called spherical closure, one can associate to any spherical variety a wonderful variety. Here we want to prove that to an affine spherical variety corresponding to a generic point in the invariant Hilbert scheme it is associated a wonderful variety with the given spherical system.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Temat(-y)
Zaproszenie do składania wniosków
FP7-PEOPLE-2007-2-1-IEF
Zobacz inne projekty w ramach tego zaproszenia
System finansowania
MC-IEF -Koordynator
38041 GRENOBLE
Francja