Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-16

Solutions to the Witten-Dijkgraaf-Verlinde-Verlinde equations of associativity and their applications

Ziel

The main subject of the proposed research is the theory of Frobenius manifolds, which unifies different areas of mathematics such as the theory of singularities, quantum cohomologies of algebraic varieties, and Hurwitz spaces. From the point of view of physics, some Frobenius structures describe the moduli space of topological conformal field theories. They also appear in other areas of active current research - from random matrices to interface dynamics.

The first goal of this project is to construct, starting with an arbitrary Frobenius manifold, an associated Frobenius manifold whose dimension is twice as large as the dimension of the given manifold. Such a construction was found in the previous work of the applicant for Frobenius structures on Hurwitz spaces (spaces of meromorphic functions on a Riemann surface). A generalization of the construction to an arbitrary Frobenius manifold would be of great interest due appearance of Frobenius structures in aforementioned topics. The second goal is to find new Frobenius structures on Hurwitz spaces which in the simplest case correspond to Hitchin's two-parametric solution to the Painlev\'e-6 equation.

This problem has already been partially addressed in the work of the applicant: new Frobenius structures related to a one-parameter subfamily of Hitchin's solutions were found. However, the problem of introducing two parameters into the simplest Hurwitz Frobenius structures remains an intriguing open question. Finally, we plan to investigate the meaning of new Frobenius structures from the point of view of applications. In particular, we shall explore a recently established relationship between Frobenius structures on Hurwitz spaces and random matrix theory. We plan to use the obtained Frobenius structures to find new random matrix models.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP6-2004-MOBILITY-7
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

IIF - Marie Curie actions-Incoming International Fellowships

Koordinator

MAX-PLANK INSTITUTE FOR MATHEMATICS, BONN
EU-Beitrag
Keine Daten
Adresse


Deutschland

Auf der Karte ansehen

Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0