Ziel
Fouling of heat exchangers in refining industry crude oil preheat trains is a chronic operating problem that reduces heat transfer and energy recovery in these systems costing the industry $4.5 billion per annum. Eight percent of industrial plant operating costs may be attributed to heat exchanger fouling. Despite enormous costs associated with fouling, the industry relies on off-line cleaning because there are no on-line systems capable of operating under high temperature, low velocity conditions with chemically reactive fluids. The cost of taking plant off-line inevitably means that the heat exchanger operates at significantly less than peak efficiency. Our proposed solution is to develop an innovative projectile based on-line cleaning and injection system that will work under the required operating conditions to mitigate foulant build-up throughout the heat exchanger. Achieving our objectives will require research to formulate accurate correlations of foulant deposition rate as a function of geometry and operating conditions, the development of a composite projectile material to achieve the required mechanical properties and chemical stability as well as a projectile trajectory control system to deliver a uniform distribution of projectiles over the heat exchanger tube-face. Furthermore; ensuring that projectiles are propelled through the heat exchanger tubes in a low velocity regime will require us to devise a means to temporarily increase flow velocity through selected heat exchanger tubes. Research will concentrate on characterizing foulant deposition mechanism, structure and rate, projectile tribology as well as gaining a detailed understanding of heat exchanger fluid flow and its control. The proposed solution will provide the industry with significant energy savings of over 10% and reduce the CO2 foot print across a wide range of industrial sectors.
Wissenschaftliches Gebiet
Schlüsselbegriffe
Programm/Programme
Aufforderung zur Vorschlagseinreichung
FP7-ENERGY-2008-1
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
CP - Collaborative project (generic)Koordinator
LE13 0PB MELTON MOWBRAY
Vereinigtes Königreich