Obiettivo
The goal of this project is to study conformally invariant fractal structures from the perspectives of analysis, dynamics, probability, geometry and physics, emphasizing interrelations of these fields. In the last two decades such structures emerged in several areas: continuum scaling limits of 2D critical models in statistical physics (percolation, Ising model); extremal configurations for various problems in complex analysis (multifractal harmonic measures, coefficient growth of univalent maps, Brennan's conjecture); chaotic sets for complex dynamical systems (Julia sets, Kleinian groups). Capitalizing on recent successes, I plan to continue my work in these areas, exploiting their interactions and connections to physics. I intend to achieve at least some of the following goals: * To establish that several critical lattice models have conformally invariant scaling limits, by building upon results on percolation and Ising models and finding discrete holomorphic observables. * To study geometric properties of arising fractal curves and random fields by connecting them to Schramm's SLE curves and Gaussian Free Fields. * To investigate massive scaling limits by describing them geometrically with generalizations of SLEs. * To lay mathematical framework behind relevant physical notions, such as Coulomb Gas (by relating height functions to GFFs) and Quantum Gravity (by identifying limits of random planar graphs with Liouville QGs). * To improve known bounds in several old questions in complex analysis by studying multifractal spectra of harmonic measures. * To estimate extremal behavior of such spectra by using holomorphic motions of (quasi) conformal maps and thermodynamic formalism. * To understand nature of extremal multifractals for harmonic measure by studying random and dynamical fractals. The topics involved range from century old to very young ones. Recently connections between them started to emerge, opening exciting possibilities for new developments in some long standing open problems.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica applicata sistemi dinamici
- scienze naturali matematica matematica pura analisi matematica analisi complessa
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
ERC-2008-AdG
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Istituzione ospitante
1211 Geneve
Svizzera
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.