Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-30

Power-integral points on elliptic curves

Objetivo

The study of Diophantine equations is one of the oldest branches of pure mathematics. The 20th century saw Siegel’s theorem about the finitness of integral points on elliptic curves, the negative solution of Hilbert’s 10th problem, Faltings' Theorem and the proof of Fermat’s Last Theorem. In the 21st century much work has already been done to resolve extensions of Hilbert’s 10th problem and to make Faltings' theorem effective. Moreover, solving generalized Fermat equations has, for example, led to all of the perfect powers in the Fibonacci sequence being found, an unsolved problem for over 50 years. In 2006 the applicant proved that for each positive integer larger than 2, there corresponds a finite set of rational points on an elliptic curve which contains the integral points. The points in these finite sets have an important number theoretic structure and are called power-integral points. However, the proof given by the applicant uses Faltings' theorem and so gives no way to find them. Remarkably, in many cases the power-integral points can be found by solving generalized Fermat equations and by finding the perfect powers in an elliptic divisibility sequence. An elliptic divisibility sequence is in many ways an analogue of the Fibonacci sequence and its properties are receiving a lot of attention due to links with extensions of Hilbert’s 10th problem and Cryptography. It is believed that the study of these sequences combined with advances in solving Diophantine equations will achieve the objectives of this proposal. These are: to find all of the power-integral points on families of elliptic curves, and to give a quantitative bound for the number of power-integral points on an arbitrary elliptic curve.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-IEF-2008
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IEF - Intra-European Fellowships (IEF)

Coordinador

UNIVERSITEIT UTRECHT
Aportación de la UE
€ 151 863,51
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0