Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Spastic paraplegia genes and endosomal signaling in Drosophila

Objective

The hereditary spastic paraplegias (HSPs) are a group of neurodegenerative conditions characterised by the degeneration of longer spinal cord motor tract axons. The normal function of the 13 cloned spastic paraplegia genes (SPGs) is largely unknown, but most encode intracellular membrane-associated proteins. Recently, the host laboratory has established that one of these genes, SPG6, encodes an endosomal regulator of BMP receptor trafficking, and regulates synaptic growth and axonal microtubules via this effect. The aim of this project is to test whether other intracellular membrane SPG products also function in receptor membrane trafficking and signalling, particularly in the BMP pathway. The focus of the study will be on the three SPGs currently most amenable to study in Drosophila melanogaster, a model system with proven power in this area. Top priority will be given to the recently identified spastizin (SPG15), an endosomal localised protein containing a FYVE motif, found on proteins that function in the regulation of endocytic trafficking. Mutants of the Drosophila SPG15 homologue will be generated to study phenotypes, particularly at the neuromuscular junction (NMJ). Also, antibodies will be generated to investigate spastizin colocalisation and association with BMP, Wnt, and Notch pathway subunits. In addition, I will use similar approaches to test two other membrane associated SPG products: spastin (SPG4) and atlastin (SPG3A). These are among the most commonly mutated SPGs, thus Drosophila stocks and reagents are already available, but their potential role in regulating endosomal trafficking pathways is not well studied. This investigation, into the functional pathways of spastizin, spastin, and atlastin, will further the understanding of the mechanism of action of mutated proteins in motor neuron degeneration.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IEF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 170 733,61
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0