Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-30

Open Gromov-Witten theory, real symplectic geometry and mirror symmetry

Objetivo

A great deal of research in symplectic geometry has revolved around Gromov-Witten invariants, a mathematical model of the physics of closed strings. Recent research in string-theory indicates that there should be an open-string analog of Gromov-Witten invariants, despite certain mathematical complications. In my thesis, I introduced a working definition of open Gromov-Witten invariants for real symplectic manifolds. I intend to study the properties of these new open Gromov-Witten invariants, and investigate how to extend the definition further.

In my thesis, I established a connection between open Gromov-Witten theory and real enumerative geometry as developed in the recent seminal work of J. Y. Welschinger. Progress in open Gromov-Witten theory should shed light on a host of problems in real enumerative geometry, especially the connection with traditional complex enumerative geometry.

The study of open Gromov-Witten theory in the context of real geometry has revealed a deep and little studied relationship between real geometry and mirror symmetry. Mirror symmetry is a striking collection of conjectures originating from string-theory that predict a comprehensive duality between symplectic geometry and complex geometry. Intuition and knowledge from symplectic geometry and complex geometry can thus be combined to solve otherwise intractable problems. In recent collaborative work with R. Pandharipande and string-theorist J.Walcher we have verified an important example of mirror symmetry in the real open Gromov-Witten setting.

I believe my research, which bridges a gap between geometry and string theory, as well as my ongoing collaboration with physicists will help build a culture of interdisciplinary interaction. Moreover, I plan to convey the knowledge I have acquired in ongoing collaborative work with leading researchers in the United States to students and researchers with whom I have already developed ties in Europe.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-IRG-2008
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IRG - International Re-integration Grants (IRG)

Coordinador

THE HEBREW UNIVERSITY OF JERUSALEM
Aportación de la UE
€ 100 000,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0