Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-30

Open Gromov-Witten theory, real symplectic geometry and mirror symmetry

Ziel

A great deal of research in symplectic geometry has revolved around Gromov-Witten invariants, a mathematical model of the physics of closed strings. Recent research in string-theory indicates that there should be an open-string analog of Gromov-Witten invariants, despite certain mathematical complications. In my thesis, I introduced a working definition of open Gromov-Witten invariants for real symplectic manifolds. I intend to study the properties of these new open Gromov-Witten invariants, and investigate how to extend the definition further.

In my thesis, I established a connection between open Gromov-Witten theory and real enumerative geometry as developed in the recent seminal work of J. Y. Welschinger. Progress in open Gromov-Witten theory should shed light on a host of problems in real enumerative geometry, especially the connection with traditional complex enumerative geometry.

The study of open Gromov-Witten theory in the context of real geometry has revealed a deep and little studied relationship between real geometry and mirror symmetry. Mirror symmetry is a striking collection of conjectures originating from string-theory that predict a comprehensive duality between symplectic geometry and complex geometry. Intuition and knowledge from symplectic geometry and complex geometry can thus be combined to solve otherwise intractable problems. In recent collaborative work with R. Pandharipande and string-theorist J.Walcher we have verified an important example of mirror symmetry in the real open Gromov-Witten setting.

I believe my research, which bridges a gap between geometry and string theory, as well as my ongoing collaboration with physicists will help build a culture of interdisciplinary interaction. Moreover, I plan to convey the knowledge I have acquired in ongoing collaborative work with leading researchers in the United States to students and researchers with whom I have already developed ties in Europe.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-IRG-2008
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-IRG - International Re-integration Grants (IRG)

Koordinator

THE HEBREW UNIVERSITY OF JERUSALEM
EU-Beitrag
€ 100 000,00
Adresse
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0