Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-30

Open Gromov-Witten theory, real symplectic geometry and mirror symmetry

Obiettivo

A great deal of research in symplectic geometry has revolved around Gromov-Witten invariants, a mathematical model of the physics of closed strings. Recent research in string-theory indicates that there should be an open-string analog of Gromov-Witten invariants, despite certain mathematical complications. In my thesis, I introduced a working definition of open Gromov-Witten invariants for real symplectic manifolds. I intend to study the properties of these new open Gromov-Witten invariants, and investigate how to extend the definition further.

In my thesis, I established a connection between open Gromov-Witten theory and real enumerative geometry as developed in the recent seminal work of J. Y. Welschinger. Progress in open Gromov-Witten theory should shed light on a host of problems in real enumerative geometry, especially the connection with traditional complex enumerative geometry.

The study of open Gromov-Witten theory in the context of real geometry has revealed a deep and little studied relationship between real geometry and mirror symmetry. Mirror symmetry is a striking collection of conjectures originating from string-theory that predict a comprehensive duality between symplectic geometry and complex geometry. Intuition and knowledge from symplectic geometry and complex geometry can thus be combined to solve otherwise intractable problems. In recent collaborative work with R. Pandharipande and string-theorist J.Walcher we have verified an important example of mirror symmetry in the real open Gromov-Witten setting.

I believe my research, which bridges a gap between geometry and string theory, as well as my ongoing collaboration with physicists will help build a culture of interdisciplinary interaction. Moreover, I plan to convey the knowledge I have acquired in ongoing collaborative work with leading researchers in the United States to students and researchers with whom I have already developed ties in Europe.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-IRG-2008
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IRG - International Re-integration Grants (IRG)

Coordinatore

THE HEBREW UNIVERSITY OF JERUSALEM
Contributo UE
€ 100 000,00
Indirizzo
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israele

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0