Obiettivo
A great deal of research in symplectic geometry has revolved around Gromov-Witten invariants, a mathematical model of the physics of closed strings. Recent research in string-theory indicates that there should be an open-string analog of Gromov-Witten invariants, despite certain mathematical complications. In my thesis, I introduced a working definition of open Gromov-Witten invariants for real symplectic manifolds. I intend to study the properties of these new open Gromov-Witten invariants, and investigate how to extend the definition further.
In my thesis, I established a connection between open Gromov-Witten theory and real enumerative geometry as developed in the recent seminal work of J. Y. Welschinger. Progress in open Gromov-Witten theory should shed light on a host of problems in real enumerative geometry, especially the connection with traditional complex enumerative geometry.
The study of open Gromov-Witten theory in the context of real geometry has revealed a deep and little studied relationship between real geometry and mirror symmetry. Mirror symmetry is a striking collection of conjectures originating from string-theory that predict a comprehensive duality between symplectic geometry and complex geometry. Intuition and knowledge from symplectic geometry and complex geometry can thus be combined to solve otherwise intractable problems. In recent collaborative work with R. Pandharipande and string-theorist J.Walcher we have verified an important example of mirror symmetry in the real open Gromov-Witten setting.
I believe my research, which bridges a gap between geometry and string theory, as well as my ongoing collaboration with physicists will help build a culture of interdisciplinary interaction. Moreover, I plan to convey the knowledge I have acquired in ongoing collaborative work with leading researchers in the United States to students and researchers with whom I have already developed ties in Europe.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura topologia topologia simplettica
- scienze naturali scienze fisiche fisica teoretica teoria delle stringhe
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica applicata modello matematico
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP7-PEOPLE-IRG-2008
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
91904 JERUSALEM
Israele
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.