Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Convex Optimization Methods for Computer Vision and Image Analysis

Objective

Optimization methods have become an established paradigm to address most Computer Vision challenges including the
reconstruction of three-dimensional objects from multiple images, or the tracking of a deformable shape over time. Yet, it has
been largely overlooked that optimization approaches are practically useless if they do not come with efficient algorithms to
compute minimizers of respective energies. Most existing formulations give rise to non-convex energies. As a consequence,
solutions highly depend on the choice of minimization scheme and implementational (initialization, time step sizes, etc.), with
little or no guarantees regarding the quality of computed solutions and their robustness to perturbations of the input data.
In the proposed research project, we plan to develop optimization methods for Computer Vision which allow to efficiently
compute globally optimal solutions. Preliminary results indicate that this will drastically leverage the power of optimization
methods and their applicability in a substantially broader context. Specifically we will focus on three lines of research: 1) We
will develop convex formulations for a variety of challenges. While convex formulations are currently being developed for
low-level problems such as image segmentation, our main effort will focus on carrying convex optimization to higher level
problems of image understanding and scene interpretation. 2) We will investigate alternative strategies of global optimization
by means of discrete graph theoretic methods. We will characterize advantages and drawbacks of continuous and discrete
methods and thereby develop novel algorithms combining the advantages of both approaches. 3) We will go beyond convex
formulations, developing relaxation schemes that compute near-optimal solutions for problems that cannot be expressed by
convex functionals.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITAET MUENCHEN
EU contribution
€ 1 985 400,00
Address
Arcisstrasse 21
80333 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0