Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Convex Optimization Methods for Computer Vision and Image Analysis

Objectif

Optimization methods have become an established paradigm to address most Computer Vision challenges including the
reconstruction of three-dimensional objects from multiple images, or the tracking of a deformable shape over time. Yet, it has
been largely overlooked that optimization approaches are practically useless if they do not come with efficient algorithms to
compute minimizers of respective energies. Most existing formulations give rise to non-convex energies. As a consequence,
solutions highly depend on the choice of minimization scheme and implementational (initialization, time step sizes, etc.), with
little or no guarantees regarding the quality of computed solutions and their robustness to perturbations of the input data.
In the proposed research project, we plan to develop optimization methods for Computer Vision which allow to efficiently
compute globally optimal solutions. Preliminary results indicate that this will drastically leverage the power of optimization
methods and their applicability in a substantially broader context. Specifically we will focus on three lines of research: 1) We
will develop convex formulations for a variety of challenges. While convex formulations are currently being developed for
low-level problems such as image segmentation, our main effort will focus on carrying convex optimization to higher level
problems of image understanding and scene interpretation. 2) We will investigate alternative strategies of global optimization
by means of discrete graph theoretic methods. We will characterize advantages and drawbacks of continuous and discrete
methods and thereby develop novel algorithms combining the advantages of both approaches. 3) We will go beyond convex
formulations, developing relaxation schemes that compute near-optimal solutions for problems that cannot be expressed by
convex functionals.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2009-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

TECHNISCHE UNIVERSITAET MUENCHEN
Contribution de l’UE
€ 1 985 400,00
Adresse
Arcisstrasse 21
80333 Muenchen
Allemagne

Voir sur la carte

Région
Bayern Oberbayern München, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0