Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Plurals, Predicates, and Paradox: Towards a Type-Free Account

Objetivo

This project aims to transform our understanding of the logical paradoxes, their solution and significance for mathematics, philosophy and semantics. It seeks to show that some of the key inferences in the paradoxes should not uncritically be blocked, as is customary, but rather be tamed and put to valuable mathematical, philosophical and semantic use. By adopting a richer logical framework than usual, the paradoxes can be transformed from threats to valuable sources of insight. When discovered at the turn of the previous century, the paradoxes caused a foundational crisis in mathematics. Many logicians and philosophers now believe the crisis has been resolved. This project denies that an acceptable resolution has been found and aims to do better. A strong push remains towards paradox. This push arises from the widespread use of (and need for) higher-order logics (HOL), which allow quantification into the positions of predicates or plural noun phrases. Phase I seeks to reveal greater similarities between HOL and set theory than generally appreciated. Phase II explores four arguments that HOL collapses to first-order logic, i.e. that every higher-order entity defines a corresponding first-order entity. These arguments are generally ignored as they threaten to reintroduce the paradoxes. But we show that a properly circumscribed form of collapse is a valuable source of mathematical and semantic insight. Phase III examines controlled forms of collapse using notions of modality and groundedness. This enables us to motivate ZF set theory and valuable semantic theories, explain the nature of cognition about sets and properties, and show that mathematics cannot be fully extensionalized. Phase IV applies these insights to solve the paradoxes and criticize influential uses of HOL.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2009-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

UNIVERSITETET I OSLO
Aportación de la UE
€ 507 769,33
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (2)

Mi folleto 0 0