European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Spin related phenomena in mesoscopic transport

Obiettivo

The rapid progress of nanotechnology made possible the realization of nano-devices in which the motion of the carriers obeys the laws of quantum mechanics. They offer a unique laboratory for study of fundamental quantum effects, such as entanglement, topological phase and new states of matter arising from many- body correlations. Besides, mesoscopic objects can serve as components of the electronic and optoelectronic devices of new generation. In this perspective the study spin related phenomena is of particular importance as use of the spin degree of freedom opens a way to practical realization of such nanodevices as single electron memory elements, spin transistors, quantum beam splitters and spin filters. Another important topic in the field of mesoscopic transport is connected with many- body correlations, which manifest itself via variety of intriguing physical phenomena. In many of them spin plays a major role. The analysis of an interplay between spin dynamics and mesoscopic many- body correlations is thus an actual task. In a current Multidisciplinary Marie Curie FP7-PEOPLE-IRSES project SPINMET we plan to analyse many body spin related phenomena in various types of mesoscopic structures focusing on following main topics: i) Spin- interference phenomena in non-single connected mesoscopic objects ii) “0.7 anomaly” and related phenomena in 1D ballistic transport iii) New states of quantum spinor 1D liquids. iv) Spin currents and spin accumulation in real mesoscopic structures. The final objective to understand the mechanisms governing mesoscopic spin dynamics and its interplay with many-body correlations and formulation of practical recommendations for their applications in High-Tech industry: silicon spin transistor without ferromagnetic contacts; resistance standard based on the quantum spin Hall effect etc.

Invito a presentare proposte

FP7-PEOPLE-2009-IRSES
Vedi altri progetti per questo bando

Coordinatore

HASKOLI ISLANDS
Contributo UE
€ 196 200,00
Indirizzo
SAEMUNDARGOTU 2
101 Reykjavik
Islanda

Mostra sulla mappa

Regione
Ísland Ísland Höfuðborgarsvæði
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Ivan Shelykh (Prof.)
Collegamenti
Costo totale
Nessun dato

Partecipanti (3)