Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Nano-Optical Antennas for Tuneable Single Photon Super-Emitters

Obiettivo

Nano-optical antennas allow to confine light on a truly nanometer scale. Indeed, my group recently demonstrated efficient funneling of incident far field to antenna hotspots, i.e. nano-focusing down to 25 nm, and achieved for the first time steering of the angular photon emission of a single molecule. These pioneering results on close encounters between nano-antennas and photon emitters pave the way to a regime of new physical phenomena: super-emission, gradient effects, breakdown of the dipole approximation, near-field spectra, single photon beaming, quantized plasmons and potentially strong coupling. These are exactly the novel effects I plan to explore. Specific objectives are: - Nano-optical control: positioning of single photon emitters at antenna hotspots with < 10 nm accuracy by top-down fabrication, optical forces and chemical recognition. - Super-emission-focusing: boosting of emission to ps Rabi periods and unity quantum efficiency by resonant coupling to the nano-antenna. Photons will be beamed in an antenna dominated angular cone, which in reciprocity acts as the acceptance cone for super-focusing. - Coherent antenna control: by shaping the phase content of broad band fs pulses and tuning the antenna load by optically active materials, I will control nanoscale fields, both in the temporal and spatial domain. - Quantized plasmons: by coupling single photon emitters across a nano-antenna I will explore strong coupling and uncover the quantum nature of plasmons. This research aims for a profound understanding of the fundamental limits of optical control at the nanoscale. The new tuneable photon super-emitters and nano-hot-spots open several new horizons: controlled single photon sources for quantum-information; light harvesting; energy conversion; efficient bio-sensors; optical imaging with 10 nm resolution.

Invito a presentare proposte

ERC-2009-AdG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

ERC-AG - ERC Advanced Grant

Istituzione ospitante

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Contributo UE
€ 2 499 600,00
Indirizzo
AVINGUDA CARL FRIEDRICH GAUSS 3
08860 Castelldefels
Spagna

Mostra sulla mappa

Regione
Este Cataluña Barcelona
Tipo di attività
Research Organisations
Ricercatore principale
Niko Frans Van Hulst (Prof.)
Contatto amministrativo
Dolors Mateu (Ms.)
Collegamenti
Costo totale
Nessun dato

Beneficiari (1)