Objetivo
Automorphic forms are an important subject in number theory and have many arithmetic applications. Some crucial results in the theory of (classical) automorphic forms include results on subconvexity, converse theorems and zeros of L-functions, to name only a few. However, so far the theory of higher rank groups is not as developed as the theory of (classical) automorphic forms and in the last years interest in higher rank groups and their application has increased. This can be seen from the number of workshops that deal with this topic, e.g. the American Institute of Mathematics (AIM) organized in the last two years three workshops that dealt with higher rank groups, namely the workshops "Computing arithmetic spectra", "Subconvexity bounds for L-functions", "Analytic theory of GL(3) automorphic forms and applications". In the proposed project we want to study a wide range of analytic aspects of higher rank groups, especially their L-functions and their applications (e.g. arithmetic quantum chaos in theoretical physics). It turns out that outstanding results on automorphic forms of groups of rank less than 1 have been very recently obtained via techniques largely inspired from ergodic theory. For instance, the subconvexity problem with respect to all the parameters at the same time for GL(1) and GL(2) automorphic forms was solved a few months ago. On the one hand, these techniques mimic the classical analytic methods but their main advantage lies in their softness. One purpose of this project is to master deeply these techniques and to determine how they could be used in the higher rank setting. On the other hand, the limit of these ergodic techniques (even in the rank 1 case) should shed some light on new analytic problems, which could possibly be attacked via classical techniques. Roughly speaking, the intricacies of the links between analytic and ergodic techniques are the core of this project.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras aritmética funciones L
- ciencias naturales ciencias físicas física teórica
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
FP7-PEOPLE-2009-IEF
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Coordinador
8092 Zuerich
Suiza
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.