Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Identification and Characterization of Host and Phage Proteins Interacting with the CRISPR System

Objective

The CRISPR system was recently identified as a bacterial defense mechanism against phages and plasmids. The CRISPR system is composed of DNA arrays containing short sequences identical to those present in phages and plasmids. These short DNAs are transcribed and processed by CRISPR associated proteins that also guide other CRISPR proteins to target the invading DNA. Only a few of the CRISPR components have been characterized to date and their mechanism of action is still largely unknown. Phage defense mechanisms probably have co-evolved against the CRISPR system, but none have yet been found. We propose to identify phage genes that counteract the CRISPR system. We will utilize screens that make use of the bacterial version of the yeast two-hybrid genetic system, phage genomic libraries, and biochemical assays to identify phage genes that help phages evade the CRISPR system. The candidate genes will be characterized both genetically and biochemically to allow structural studies of their interactions with the CRISPR system. These genes will then be cloned into commercial phages that are used to kill bacterial pathogens so that the phages acquire resistance to the CRISPR defense mechanism. We also propose to identify the yet unknown E. coli proteins that participate in the activity of the CRISPR system by using genetic screens of transposon insertion mutant libraries. The identification of novel proteins that participate in the CRISPR system will constitute a significant step toward the ultimate goal of reconstituting the complete system from purified proteins. Finally, we propose to clone all the components of the E. coli CRISPR system and render them functional in heterologous prokaryotic organisms such as attenuated strains of Salmonella, Shigella and more distantly related species such as Streptococci. Cloning the genes of the E. coli CRISPR system into heterologous bacteria will allow us to genetically address the role of each gene.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

TEL AVIV UNIVERSITY
EU contribution
€ 100 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0