Obiettivo
The project will demonstrate a new full ceramic SOFC cell with superior robustness as regards to sulphur tolerance, carbon deposition (coking) and re-oxidation (redox resistance). Such a cell mitigates three major failure mechanisms which today have to be addressed at the system level. Having a more robust cell will thus enable the system to be simplified, something of particular importance for small systems, e.g. for combined heat and power (CHP). The new ceramic based cell will be produced by integrating a new, very promising class of materials, strontium titanates, into existing, proven SOFC cell designs. Cost effective and up-scalable processes will be developed for the fabrication of supports and cells. In an iterative process the cell performance at defined tolerance levels will subsequently be improved by adjustments of the fabrication on full cell level according to identified failure mechanisms. Cells with matching performance but improved sulphur, coling and re-oxidation tolerance compared to state-of-the-art Ni-cermet materials will finally be demonstrated in a real system environment.
Campo scientifico
- natural scienceschemical sciencesinorganic chemistryalkaline earth metals
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generationcombined heat and power
- engineering and technologyenvironmental engineeringenergy and fuelsfuel cells
Argomento(i)
Invito a presentare proposte
FCH-JU-2009-1
Vedi altri progetti per questo bando
Meccanismo di finanziamento
JTI-CP-FCH - Joint Technology Initiatives - Collaborative Project (FCH)Coordinatore
2800 Kongens Lyngby
Danimarca