Objectif
Interior point algorithms and a dramatic growth in computing power have revolutionized optimization in
the last two decades. Highly nonlinear problems which were previously thought intractable are now
routinely solved at reasonable scales. Semidefinite programs (i.e. linear programs on the cone of positive
semidefinite matrices) are a perfect example of this trend: reasonably large, highly nonlinear but convex
eigenvalue optimization problems are now solved efficiently by reliable numerical packages. This in turn
means that a wide array of new applications for semidefinite programming have been discovered,
mimicking the early development of linear programming. To cite only a few examples, semidefinite
programs have been used to solve collaborative filtering problems (e.g. make personalized movie
recommendations), approximate the solution of combinatorial programs, optimize the mixing rate of
Markov chains over networks, infer dependence patterns from multivariate time series or produce optimal
kernels in classification problems.
These new applications also come with radically different algorithmic requirements. While interior point
methods solve relatively small problems with a high precision, most recent applications of semidefinite
programming in statistical learning for example form very large-scale problems with comparatively low
precision targets, programs for which current algorithms cannot form even a single iteration. This
proposal seeks to break this limit on problem size by deriving reliable first-order algorithms for solving
large-scale semidefinite programs with a significantly lower cost per iteration, using for example
subsampling techniques to considerably reduce the cost of forming gradients.
Beyond these algorithmic challenges, the proposed research will focus heavily on applications of convex
programming to statistical learning and signal processing theory where optimization and duality results
quantify the statistical performance of coding or variable selection algorithms for example. Finally,
another central goal of this work will be to produce efficient, customized algorithms for some key
problems arising in machine learning and statistics.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- ingénierie et technologie génie électrique, génie électronique, génie de l’information ingénierie électronique traitement des signaux
- lettres arts art contemporain et moderne film
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2010-StG_20091028
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
75794 PARIS
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.