Obiettivo
Interior point algorithms and a dramatic growth in computing power have revolutionized optimization in
the last two decades. Highly nonlinear problems which were previously thought intractable are now
routinely solved at reasonable scales. Semidefinite programs (i.e. linear programs on the cone of positive
semidefinite matrices) are a perfect example of this trend: reasonably large, highly nonlinear but convex
eigenvalue optimization problems are now solved efficiently by reliable numerical packages. This in turn
means that a wide array of new applications for semidefinite programming have been discovered,
mimicking the early development of linear programming. To cite only a few examples, semidefinite
programs have been used to solve collaborative filtering problems (e.g. make personalized movie
recommendations), approximate the solution of combinatorial programs, optimize the mixing rate of
Markov chains over networks, infer dependence patterns from multivariate time series or produce optimal
kernels in classification problems.
These new applications also come with radically different algorithmic requirements. While interior point
methods solve relatively small problems with a high precision, most recent applications of semidefinite
programming in statistical learning for example form very large-scale problems with comparatively low
precision targets, programs for which current algorithms cannot form even a single iteration. This
proposal seeks to break this limit on problem size by deriving reliable first-order algorithms for solving
large-scale semidefinite programs with a significantly lower cost per iteration, using for example
subsampling techniques to considerably reduce the cost of forming gradients.
Beyond these algorithmic challenges, the proposed research will focus heavily on applications of convex
programming to statistical learning and signal processing theory where optimization and duality results
quantify the statistical performance of coding or variable selection algorithms for example. Finally,
another central goal of this work will be to produce efficient, customized algorithms for some key
problems arising in machine learning and statistics.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria elettronica elaborazione del segnale
- scienze umanistiche arte arte moderna e contemporanea cinematografia
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale apprendimento automatico
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
ERC-2010-StG_20091028
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Istituzione ospitante
75794 PARIS
Francia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.