Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Noncommutative Calderón-Zygmund theory, operator space geometry and quantum probability

Obiettivo

Von Neumann's concept of quantization goes back to the foundations of quantum mechanics
and provides a noncommutative model of integration. Over the years, von Neumann algebras
have shown a profound structure and set the right framework for quantizing portions of algebra,
analysis, geometry and probability. A fundamental part of my research is devoted to develop a
very much expected Calderón-Zygmund theory for von Neumann algebras. The lack of natural
metrics partly justifies this long standing gap in the theory. Key new ingredients come from
recent results on noncommutative martingale inequalities, operator space theory and quantum
probability. This is an ambitious research project and applications include new estimates for
noncommutative Riesz transforms, Fourier and Schur multipliers on arbitrary discrete groups
or noncommutative ergodic theorems. Other related objectives of this project include Rubio
de Francia's conjecture on the almost everywhere convergence of Fourier series for matrix
valued functions or a formulation of Fefferman-Stein's maximal inequality for noncommutative
martingales. Reciprocally, I will also apply new techniques from quantum probability in
noncommutative Lp embedding theory and the local theory of operator spaces. I have already
obtained major results in this field, which might be useful towards a noncommutative form of
weighted harmonic analysis and new challenging results on quantum information theory.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2010-StG_20091028
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Contributo UE
€ 1 090 925,00
Indirizzo
CALLE SERRANO 117
28006 MADRID
Spagna

Mostra sulla mappa

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0